メインコンテンツ

このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。

traingd

説明

net.trainFcn = 'traingd' は、ネットワークの trainFcn プロパティを設定します。

[trainedNet,tr] = train(net,...) は、traingd を使用してネットワークに学習させます。

traingd は、勾配降下法に従って重みとバイアスの値を更新するネットワーク学習関数です。

学習は traingd の学習パラメーターに従って行われます。以下に、学習パラメーターをその既定値と共に示します。

  • net.trainParam.epochs — 学習の最大エポック数。既定値は 1000 です。

  • net.trainParam.goal — 性能目標。既定値は 0 です。

  • net.trainParam.lr — 学習率。既定値は 0.01 です。

  • net.trainParam.max_fail — 検証エラーの最大回数。既定値は 6 です。

  • net.trainParam.min_grad — 性能の勾配の最小値。既定値は 1e-5 です。

  • net.trainParam.show — 表示間のエポック数 (表示なしは NaN)。既定値は 25 です。

  • net.trainParam.showCommandLine — コマンド ライン出力の生成。既定値は false です。

  • net.trainParam.showWindow — 学習 GUI の表示。既定値は true です。

  • net.trainParam.time — 最大学習時間 (秒単位)。既定値は inf です。

入力引数

すべて折りたたむ

入力ネットワーク。ネットワーク オブジェクトとして指定します。ネットワーク オブジェクトを作成するには、feedforwardnetnarxnet などを使用します。

出力引数

すべて折りたたむ

学習済みネットワーク。network オブジェクトとして返されます。

学習記録 (epoch および perf)。フィールドがネットワーク学習関数 (net.NET.trainFcn) によって異なる構造体として返されます。含まれるフィールドには以下のものがあります。

  • 学習、データ分割、性能の関数およびパラメーター

  • 学習セット、検証セット、およびテスト セットのデータ分割インデックス

  • 学習セット、検証セット、およびテスト セットのデータ分割マスク

  • エポックの数 (num_epochs) および最適なエポック (best_epoch)

  • 学習の状態名の一覧 (states)

  • 学習全体を通じて値を記録する各状態名のフィールド

  • 最適なネットワーク性能 (best_perfbest_vperfbest_tperf)

詳細

すべて折りたたむ

アルゴリズム

traingd は、重み関数、正味入力関数、および伝達関数に導関数がある限り、任意のネットワークの学習を行うことができます。

重みとバイアスの変数 X に対する性能 perf の微分の計算には、逆伝播が使用されます。各変数は、勾配降下法に従って調整されます。

dX = lr * dperf/dX

次のいずれかの条件が発生すると、学習が停止します。

  • epochs (反復回数) の最大数に達する。

  • time の最大値を超える。

  • 性能が goal に最小化される。

  • 性能の勾配が min_grad より小さくなる。

  • 検証性能 (検証誤差) が、最後の低下以降、max_fail 回を超えて増加する (検証の使用時)。

バージョン履歴

R2006a より前に導入