Generate and Deploy CUDA Code for Object Detection on NVIDIA Jetson
GPU Coder™ generates optimized CUDA® code from MATLAB® code for deep learning, embedded vision, and autonomous systems. The generated code calls optimized NVIDIA® CUDA libraries and can be integrated into your project as source code, static libraries, or dynamic libraries. It can also be used for prototyping on GPUs, such as the NVIDIA Tesla® and NVIDIA Tegra®.
See an example of a real-time object detection algorithm using a deep learning neural network based on YOLO architecture. This single neural network predicts bounding boxes and class probabilities directly from an input image in one evaluation. The object is identified with a bounding box if the probability is above certain threshold.
Using cnncodegen
function, you can generate CUDA code for your neural network and then integrate the generated code into a bigger application. The main function uses OpenCV API to read the input image and display the output image with bounding boxes. Using this workflow, you can deploy your deep learning algorithm on embedded GPU targets such as Jetson Tegra or Drive™ PX platforms.
Published: 8 Jan 2018
Featured Product
GPU Coder
Up Next:
Related Videos:
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)