Fault Detection Using Deep Learning Classification

This demo shows how to prepare, model, and deploy a deep learning LSTM based classification algorithm to identify the condition or output of
ダウンロード: 3.4K
更新 2022/9/6

This demo shows the full deep learning workflow for an example of signal data. We show how to prepare, model, and deploy a deep learning LSTM based classification algorithm to identify the condition or output of a mechanical air compressor.

We show examples on how to perform the following parts of the Deep Learning workflow:

Part1 - Data Preparation
Part2 - Modeling
Part3 - Deployment

This demo is implemented as a MATLAB project and will require you to open the project to run it. The project will manage all paths and shortcuts you need. There is also a significant data copy required the first time you run the project.

Part 1 - Data Preparation
This example shows how to extract the set of acoustic features that will be used as inputs to the LSTM Deep Learning network.

To run:
Open MATLAB project Aircompressorclassification.prj
Open and run Part01_DataPreparation.mlx

Part 2 - Modeling
This example shows how to train LSTM network to classify multiple modes of operation that include healthy and unhealthy signals.

To run:
Open MATLAB project Aircompressorclassification.prj
Open and run Part02_Modeling.mlx

Part 3 - Deployment
This example shows how to generate optimized c++ code ready for deployment.

To run:
Open MATLAB project Aircompressorclassification.prj
Open and run Part03_Deployment.mlx

引用

David Willingham (2026). Fault Detection Using Deep Learning Classification (https://github.com/matlab-deep-learning/Fault-Detection-Using-Deep-Learning-Classification), GitHub. 取得日: .

MATLAB リリースの互換性
作成: R2020a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux

GitHub の既定のブランチを使用するバージョンはダウンロードできません

バージョン 公開済み リリース ノート
1.0.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。