Deep Learning: Image anomaly detection for production line ~

バージョン 1.0.1 (12.8 MB) 作成者: Takuji Fukumoto
Use pre-trained AlexNet and 1-class SVM for anomaly detection
ダウンロード: 1.3K
更新 2020/12/25

When we apply deeplearning to anomaly detection for image on production line, there are few abnomal units to train your classifier.
Through this demo, you can learn how to try anomaly detection without training data of abnomal unit and labeling.
-kernel methods with 1class SVM and pre-trained AlexNet
-focus on production line and manufacturing.
-unsupervised classification (without labeling)
-feature visualization with t-SNE
This demo include hundreds training and test images. So you can try this now.

You can download the AlexNet support package here:
https://www.mathworks.com/matlabcentral/fileexchange/59133-neural-network-toolbox-tm--model-for-alexnet-network

引用

Takuji Fukumoto (2024). Deep Learning: Image anomaly detection for production line ~ (https://github.com/mathworks/Deep-Learning-Image-anomaly-detection-for-production-line/releases/tag/1.0.1), GitHub. 取得済み .

MATLAB リリースの互換性
作成: R2017a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersImage Data Workflows についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.1

See release notes for this release on GitHub: https://github.com/mathworks/Deep-Learning-Image-anomaly-detection-for-production-line/releases/tag/1.0.1

1.0.0.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。