rombergQuadrature

バージョン 1.1.0.0 (2.17 KB) 作成者: Matthew Kelly
Computes integral of vector functions using Romberg quadrature.
ダウンロード: 69
更新 2016/3/1

ライセンスの表示

% [x, err] = rombergQuadrature(fun,tSpan,tol)
%
% Compute the integral(fun), over the domain tSpan, to an accuracy of tol,
% using Romberg quadrature. Fully vectorized.
%
% Good for high-accuracy quadrature over smooth vector functions.
%
% If necessary, this function will automatically sub-divide the interval to
% achieve the desired accuracy. This should only occur when fun is stiff or
% non-smooth.
%
% INPUTS:
% fun = vector function to be integrated
% dx = fun(t)
% t = [1, nt] = time vector
% dx = [nx, nt] = function value at each point in t
% tSpan = [tLow, tUpp] = time span (domain) for integration
% tol = [nx,1] = desired error tolerance along each dimension
%
% OUTPUT:
% x = [nx,1] = integral along each dimension
% err = [nx, 1] = error estimate along each dimension
%
% NOTES:
% algorithm from:
% http://www.math.usm.edu/lambers/mat460/fall09/lecture29.pdf
%

引用

Matthew Kelly (2024). rombergQuadrature (https://www.mathworks.com/matlabcentral/fileexchange/55703-rombergquadrature), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2012a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersNumerical Integration and Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.1.0.0

Now the rombergQuadrature automatically detects a non-smooth integrand and sub-divides the interval to achieve the desired accuracy.

1.0.0.0