This code segment an image using color, texture and spatial data
RGB color is used as an color data
Four texture features are used: 1. mean 2. variance 3. skewness 4. kurtosis
Normalized Cut (inherently uses spatial data)
ncut parameters are "SI" Color similarity, "ST" Texture similarity, "SX" Spatial similarity, "r" Spatial threshold (less than r pixels apart), "sNcut" The smallest Ncut value (threshold) to keep partitioning, and "sArea" The smallest size of area (threshold) to be accepted as a segment
an implementation by "Naotoshi Seo" with a small modification is used for “normalized-cut” segmentation, available online at: "http://note.sonots.com/SciSoftware/NcutImageSegmentation.html", It is sensitive in choosing parameters.
引用
Alireza (2026). normalized-cut segmentation using color and texture data (https://jp.mathworks.com/matlabcentral/fileexchange/52699-normalized-cut-segmentation-using-color-and-texture-data), MATLAB Central File Exchange. 取得日: .
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- Image Processing and Computer Vision > Image Processing Toolbox > Image Segmentation and Analysis > Image Segmentation > Color Segmentation >
タグ
謝辞
ヒントを得たファイル: k-means, mean-shift and normalized-cut segmentation
| バージョン | 公開済み | リリース ノート | |
|---|---|---|---|
| 1.0.0.0 | image added |
