k-means, mean-shift and normalized-cut segmentation

バージョン 1.0.0.0 (25.1 KB) 作成者: Alireza
k-means, mean-shift and normalized-cut segmentation
ダウンロード: 9.4K
更新 2015/8/27

ライセンスの表示

This code implemented a comparison between “k-means” “mean-shift” and “normalized-cut” segmentation
Teste methods are:
Kmeans segmentation using (color) only
Kmeans segmentation using (color + spatial)
Mean Shift segmentation using (color) only
Mean Shift segmentation using (color + spatial)
Normalized Cut (inherently uses spatial data)
kmeans parameter is "K" that is Cluster Numbers
meanshift parameter is "bw" that is Mean Shift Bandwidth
ncut parameters are "SI" Color similarity, "SX" Spatial similarity, "r" Spatial threshold (less than r pixels apart), "sNcut" The smallest Ncut value (threshold) to keep partitioning, and "sArea" The smallest size of area (threshold) to be accepted as a segment

an implementation by "Naotoshi Seo" with a little modification is used for “normalized-cut” segmentation, available online at: "http://note.sonots.com/SciSoftware/NcutImageSegmentation.html". It is sensitive in choosing parameters.
an implementation by "Bryan Feldman" is used for “mean-shift clustering"

引用

Alireza (2026). k-means, mean-shift and normalized-cut segmentation (https://jp.mathworks.com/matlabcentral/fileexchange/52698-k-means-mean-shift-and-normalized-cut-segmentation), MATLAB Central File Exchange. 取得日: .

MATLAB リリースの互換性
作成: R2011a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersCluster Analysis and Anomaly Detection についてさらに検索
謝辞

ヒントを得たファイル: K-means clustering

ヒントを与えたファイル: normalized-cut segmentation using color and texture data

バージョン 公開済み リリース ノート
1.0.0.0

FX submission added