smoothn

バージョン 2.3 (9.47 KB) 作成者: Damien Garcia
SMOOTHN allows automatized and robust smoothing in arbitrary dimension w/wo missing values

ダウンロード 16K 件

更新 2020/6/20

ライセンスの表示

編集メモ: This file was selected as MATLAB Central Pick of the Week

SMOOTHN provides a fast, unsupervised and robust discretized spline smoother for data of arbitrary dimension.

SMOOTHN(Y) automatically smoothes the uniformly-sampled array Y. Y can be any N-D multicomponent noisy array (e.g. time series, images, 3D data, 3D vector fields, tensors...).

To smooth a vector field or multi-component data, Y must be a cell array. For example, if you need to smooth a 3-D vectorial flow (Vx,Vy,Vz), use Y = {Vx,Vy,Vz}. The output Z is also a cell array which contains the smoothed components.

SMOOTHN can deal with missing (NaN) values (see screenshot and examples).

SMOOTHN(...,'robust') carries out a robust smoothing that minimizes the influence of outlying data (see screenshot and examples).

SMOOTHN is made unsupervised by the minimization of the generalized cross-validation score.

Enter "help smoothn" in the Matlab command window for complete instructions and 1-D to 3-D examples.

A series of 8 documented examples is available here:
http://www.biomecardio.com/matlab/smoothn_doc.html

-----
When using this algorithm, please refer to these 2 papers:
1) Garcia D. Robust smoothing of gridded data in one and higher dimensions with missing values.
Comput Statist Data Anal, 2010;54:1167-1178
http://www.biomecardio.com/publis/csda10.pdf
2) Garcia D. A fast all-in-one method for automated post-processing of PIV data.
Exp Fluids, 2011;50:1247-1259.
http://www.biomecardio.com/publis/expfluids11.pdf
-----

引用

Damien Garcia (2022). smoothn (https://www.mathworks.com/matlabcentral/fileexchange/25634-smoothn), MATLAB Central File Exchange. 取得済み .

Garcia, Damien. “Robust Smoothing of Gridded Data in One and Higher Dimensions with Missing Values.” Computational Statistics & Data Analysis, vol. 54, no. 4, Elsevier BV, Apr. 2010, pp. 1167–78, doi:10.1016/j.csda.2009.09.020.

その他のスタイルを見る

Garcia, Damien. “A Fast All-in-One Method for Automated Post-Processing of PIV Data.” Experiments in Fluids, vol. 50, no. 5, Springer Science and Business Media LLC, Oct. 2010, pp. 1247–59, doi:10.1007/s00348-010-0985-y.

その他のスタイルを見る
MATLAB リリースの互換性
作成: R2017a
R2017a 以降 R2020a 以前と互換性あり
プラットフォームの互換性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!