Kernel regression is a power full tool for smoothing, image and signal processing, etc. However, it is computationally expensive when it is extented for multivariant cases. The efficiency can be improved by only using neighbors within the effective range arond a regression point. To improve the efficiency further, the kd-tree tool developed by Steven Michael http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7030&objectType=file is used to efficiently identify points within a range. For large data sets, this code can reduce computation time by 3 to 5 times.
引用
Yi Cao (2026). Efficient Kernel Smoothing Regression using KD-Tree (https://jp.mathworks.com/matlabcentral/fileexchange/19308-efficient-kernel-smoothing-regression-using-kd-tree), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
タグ
謝辞
ヒントを得たファイル: KD Tree Nearest Neighbor and Range Search, Multivariant Kernel Regression and Smoothing
| バージョン | 公開済み | リリース ノート | |
|---|---|---|---|
| 1.0.0.0 |
