First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07)
ライセンスがありません
[DESCRIPTION]
First-order-degree linear differential and non-homogeneous equation's solution possible the unknown integration multipler technique. Also, this simple technique's depend both sides of original homogeneous differential equation. The solution is slightly and more complicated if this integration into special form to be very complex. In this application's selected Ig=x^a.y^b integration multiplier technique for non-homogeneous form.
[SYNTAX]
DIfactor( [ f1(x,y) , f2(x,y)] , flag )
f1(x,y) : Non-homogeneous differential equation's M(x,y) function
f2(x,y) : Non-homogeneous differential equation's N(x,y) function
flag : If flag=1 than solution be perceive application else small solution
General differential equation's
[M(x,y)]dx + [N(x,y)]dy = 0
[EXAMPLE]
[2*x^3*y^4 - 5*y]dx + [x^4*y^3 - 7*x]dy = 0
M(x,y)= f1(x,y) = [2*x^3*y^4 - 5*y]
N(x,y)= f2(x,y) = [x^4*y^3 - 7*x]
Matlab sub function application
DIfactor( [2*x^3*y^4 - 5*y , x^4*y^3 - 7*x] , 1) ;
[ZIP ARCHIVE]
Example1.pdf (Analytical solution)
Example2.pdf
Example3.pdf
DIfactor.m (sub function Matlab)
example.m (run sub function)
example.html
[REFERENCES]
[1] Differential equations,PhD.Frank Ayres, Schaum's outline series and McGraw-Hill Company ,1998
[2] Mathematical handbook of formulas and tables,PhD. Murray R. Spiegel, PhD. John Liu, Second edition,McGraw-Hill book company,2001,ISBN:0-07-038203-4
[3] Differansiyel denklemler, Yrd.Do?.Dr. A.Ne?e Dernek, Do?.Dr.Ahmet,Dernek, Marmara university,Deniz book publisher,Istanbul,1995
引用
Ali OZGUL (2024). First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07) (https://www.mathworks.com/matlabcentral/fileexchange/15408-first-order-degree-linear-differential-equations-integration-factor-ig-x-a-y-b-update-23-06-07), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
タグ
謝辞
ヒントを得たファイル: Jean Le Rand D'Alambert Reduction Method (update:22-06-07)
ヒントを与えたファイル: Regular solving technique as sub-function (update:24-07-07), Non-homogeneous and linear-differential-equation solutions (update:13-07-07)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.0.0.0 |