- /
- 
        4-point Scattering or Black Hole Formation
        on 21 Oct 2024
        
        
 
    - 10
- 124
- 1
- 0
- 429
 Cite your audio source here (if applicable): 
%Courtesy WolframTones: https://tones.wolfram.com/generate/GeVNxROeNrBXyOhBx1swNynhb57VEZo01jpARE7ilYHrb
drawframe(1);
 Write your drawframe function below
function drawframe(f)
%A particular application of Hiroza equation.
%For more info: https://1drv.ms/b/s!AhGovQArU6bHgtpGy-KSv9nWQKWY-g
persistent ax k N S T
if f==1
    %Initialize stuff
    ax=gca;
    k=0;
    N=1283;
    S=13.5;
    T=ones(102)*(0.0000095*1i);
    T(6:97,6:97)=0;
    %Plot |Re(T)|
    imagesc(ax,abs(real(T)));
    %Set up axes & colormap
    axis(ax,'image');
    set(ax,'NextPlot','replacechildren','XTick',[],'YTick',[]);
    colormap(ax,'jet');
    clim(ax,[0 Inf]);
else
    Tp=zeros(102); %Duplicate T because--
    %Iterate...
    while k<=N
        k=k+1;
        %...the Hiroza equation
        Tp(2:101,2:101)=sqrt(T(2:101,3:102).*T(2:101,1:100)+T(3:102,2:101).*T(1:100,2:101))-1/4;
        T=Tp; %--T is to be iterated but Tp is to be plotted below!
        % & stop whenever frame "f" is ready
        if rem(k,S)==0 || rem(k,S)==0.5
            Tp(isinf(Tp))=0; %Blown up values set to 0 for plotting purposes!
            imagesc(ax,abs(real(Tp))); %Frame "f" drawn,
            break %so get out of here!
        end
    end
end
end


 

 
             
            