Given an integer that is a power of 10, find the number of non-zero bits, k, in its binary representation.
For example:
- n = 1, 10^n = 1010, so k = 2.
- n = 5, 10^n = 11000011010100000, so k = 6.
The solution should work for arbitrarily large powers n, say at least till n = 100.
Solution Stats
Problem Comments
2 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers40
Suggested Problems
-
Return the largest number that is adjacent to a zero
5513 Solvers
-
Extract leading non-zero digit
2244 Solvers
-
Find state names that start with the letter N
1431 Solvers
-
Make a random, non-repeating vector.
11168 Solvers
-
365 Solvers
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
I can't get the last three cases to work out. I've checked the answers a couple of different ways. I still get 26 1s in the binary for 10^100. Is there a defect in the solutions offered?
The test cases are correct. In case you are using dec2bin, it is subject to loss of significance.