fsolve
15 ビュー (過去 30 日間)
古いコメントを表示
Is there a way to accelerate the fsolve function, with the least lost of precision possible. In:
beta(n+1)=fsolve(F,beta(n))
採用された回答
Sean de Wolski
2011 年 6 月 17 日
preallocate beta
beta = zeros(nmax+1,1);
beta(1) = beta_of_1;
for ii = 1:nmax
beta(ii+1) = fsolve(F,beta(ii));
end
EDIT more stuff:
You calculate:
- 'sqrt((Ko^2-(x)^2))*b': 4x
- 'sqrt((Ko^2*Ed-(x)^2))*a': 4x
- the bessel functions multiple times a pop.
Turn your function handle into a function. Make each of these calculations once, then use them multiple times.
その他の回答 (1 件)
Walter Roberson
2011 年 6 月 17 日
fsolve() can be much faster if you can constrain the range to search in.
2 件のコメント
Walter Roberson
2011 年 6 月 20 日
Sorry it turns out that fsolve() has no way of constraining ranges. fzero() can operate over an interval, if your function has only one independent variable.
参考
カテゴリ
Help Center および File Exchange で Linear Algebra についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!