2D ODE with constant? how to solve

14 ビュー (過去 30 日間)
mays rashad
mays rashad 2021 年 8 月 4 日
回答済み: Sulaymon Eshkabilov 2021 年 8 月 4 日

採用された回答

Sulaymon Eshkabilov
Sulaymon Eshkabilov 2021 年 8 月 4 日
Most parts of your code is ok, but within the loop, you have overlooked sth and thus, you final solutions are not quite accurate. Here is ODE45 simulation which can be compared with your simulation results.
ICs=[0.6;0.6];
a=0.10;
b=10;
t=[0,60];
F = @(t, z)([a-z(1)+z(1).^2*z(2);b-z(1).^2*z(2)]);
OPTs = odeset('reltol', 1e-6, 'abstol', 1e-9);
[time, z]=ode45(F, t, ICs, OPTs);
figure(2)
plot(time,z(:,1),'b',time,z(:,2),'r')
xlabel('time')
ylabel('x(t) y(t)')
legend('x(t)', 'y(t)', 'location', 'best')
title('Schnackenberg eqn simulation'), xlim([0, 5])
figure(1)
plot(z(:,1),z(:,2),'k')
title('Simulation using ODE45'), grid on
xlabel('x(t)')
ylabel('y(t)')

その他の回答 (1 件)

Sulaymon Eshkabilov
Sulaymon Eshkabilov 2021 年 8 月 4 日
Use odex (ode23, ode45, ode113, etc.) solvers. See this doc how to employ them in your exercise: https://www.mathworks.com/help/matlab/ref/ode45.html?searchHighlight=ode45&s_tid=srchtitle
  1 件のコメント
mays rashad
mays rashad 2021 年 8 月 4 日
Is this solution correct?
%x'=a-x+x^2y y'=b-x^2y
clear all,close all, clc
x(1)=0.6;
y(1)=0.6;
a=0.10;
b=10;
h=0.02;
t=0:h:60;
for i=1:(length(t)-1)
k1=h*(a-x(i)+y(i)*x(i)^2);
L1=h*(b-y(i)*x(i)^2);
k2=h*(a-(x(i)+k1/2)+(y(i)+L1/2)*(x(i)^2+k1/2));
L2=h*(b-(y(i)+L1/2)*(x(i)^2+k1/2));
k3=h*(a-(x(i)+k2/2)+(y(i)+L2/2)*(x(i)^2+k2/2));
L3=h*(b-(y(i)+L2/2)*(x(i)^2+k2/2));
k4=h*(a-(x(i)+k3)+(y(i)+L3)*(x(i)^2+k3));
L4=h*(b-(y(i)+L3)*(x(i)^2+k3));
x(i+1)=x(i)+(k1+2*k2+2*k3+k4)*(h/6);
y(i+1)=y(i)+(L1+2*L2+2*L3+L4)*(h/6);
end
plot(t,x,'b',t,y,'r')
xlabel('time')
ylabel('x in blue and y in red')
figure
plot(x,y,'g')
title('2D figure(RK4)')
xlabel('X')
ylabel('Y')

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by