I need to fix the code by using for loop to plot the relative error E in 2 norm versus n.

2 ビュー (過去 30 日間)
ebtisam almehmadi
ebtisam almehmadi 2021 年 8 月 3 日
回答済み: Sivani Pentapati 2021 年 9 月 2 日
%%%% Taylor ploynomials pn(x)
x=2:0.01:3;
f = 1./x;
p1=1/2.5;
p2= 1/2.5 -(4/25)*(x-2.5);
p3= 1/2.5 -(4/25)*(x-2.5) + (8/125)*(x-2.5).^2;
p4= 1/2.5 -(4/25)*(x-2.5) + (8/125)*(x-2.5).^2 -(16/625)*(x-2.5).^3;
E1=sqrt((f-p1).^2)/sqrt((f).^2)
E2=sqrt((f-p2).^2)/sqrt((f).^2)
E3=sqrt((f-p3).^2)/sqrt((f).^2)
E4=sqrt((f-p4).^2)/sqrt((f).^2)
n=[1 2 3 4]
E=[ E1 E2 E3 E4];
semilogy(n,E)

回答 (1 件)

Sivani Pentapati
Sivani Pentapati 2021 年 9 月 2 日
Please refer to the below code snippet to calculate the l2 norm of error in iterative way. For more information, please refer to for loop in MATLAB documentation.
p(1,:)=1/2.5;
for i=2:4
p(i,:)= p(i-1,:)+ (4/25)*(2/5).^(i-2)*(-1).^(i-1)*(x-2.5).^(i-1);
end
E=sqrt((f-p).^2)/sqrt((f).^2);
n=1:4;
semilogy(n,E);

カテゴリ

Help Center および File ExchangeLoops and Conditional Statements についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by