volume tessellation with spheres

3 ビュー (過去 30 日間)
bob
bob 2013 年 10 月 1 日
コメント済み: Cedric 2013 年 10 月 4 日
Hey guys,
I have some irregular-shape particles as stl. What I need to do is to fill the volume with regular array of spheres, like cubic array. Having a control on the size of filling spheres (which is the same for all the spheres) will be useful.
Any idea?
  7 件のコメント
bob
bob 2013 年 10 月 3 日
no, I'm not. But let's say I got it. The main thing is still there.
Cedric
Cedric 2013 年 10 月 4 日
編集済み: Cedric 2013 年 10 月 4 日
No, assume that you've got it, then you build a regular lattice of sphere centers, which is a basic array of 3D coordinates that covers the extent of the particulate. This is easy to do as it is a rectangular volume (framing the original particulate); assuming that you have your STL nodes coordinates in a nx3 array named nodes, you'd do something like
r = .. ; % Spheres radius.
mins = min(nodes) ;
maxs = max(nodes) ;
[X,Y,Z] = ndgrid( mins(1):2*r:maxs(1), ...
mins(2):2*r:maxs(2), ...
mins(3):2*r:maxs(3) ) ;
centers = [X(:),Y(:),Z(:)] ; % If needed, but you might be
% able to work directly with
% X, Y, and Z.
I didn't read the description of the FEX function written by Sven, but assuming that it works on arrays of points and with a non-convex polyhedron, basically the next step is just to submit the internal buffer STL and the array of centers to know which ones define spheres inside the original particulate.

サインインしてコメントする。

回答 (1 件)

Sean de Wolski
Sean de Wolski 2013 年 10 月 1 日
The cellphone tower optimization problem solves this as a constrained optimization with circles inside of a square. I would recommend starting with this and modifying it to be three dimensional with irregular boundary constraints.
  2 件のコメント
bob
bob 2013 年 10 月 1 日
Good idea! OK, I give it a try.
Thanks
Sean de Wolski
Sean de Wolski 2013 年 10 月 1 日
Thinking about it some more, I'm not sure this will work with a non-convex shape...

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSTL (STereoLithography) についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by