Discrepancy between eigenvalues and eigenvectors derived from analytical solution and matlab code.
1 回表示 (過去 30 日間)
古いコメントを表示
Hello,
I have this matrix [ep+V/2 t*phi; t*conj(phi) eb-V/2].
The analytical solution for eigenvalues of this matrix is E=(eb+ep)/2+v*sqrt((eb-ep+V)/2+t^2*|phi|^2).
But matlab solution is different from this.
Can someone help me for solve this chalenge?
2 件のコメント
採用された回答
Chunru
2021 年 7 月 23 日
編集済み: Chunru
2021 年 7 月 23 日
First, the sign in the last element of H should be '-' rather than '+' as in your question. Second, "doc eig" command for the order of output variables. Third, make sure your analytical result is correct. Try manual simplification then. You may want to verify the symbolic expressions with some numerical values to see if they agree.
syms eb ep t V phi
H=[ep+V/2 t*phi; t*conj(phi) eb-V/2]
[v,d]=eig(H) % not [E, v]
その他の回答 (1 件)
Steven Lord
2021 年 7 月 23 日
syms eb ep t V phi
H=[ep+V/2 t*phi; t*conj(phi) eb+V/2]
[E,v]=eig(H)
Let's check if the elements in E and v satisfy the definition of the eigenvectors and eigenvalues for H.
simplify(H*E-E*v)
The elements in E and v satisfy the definition of the eigenvectors and eigenvalues for H, so they are eigenvectors and eigenvalues of H. What did you say you expected the eigenvalues to be?

参考
カテゴリ
Help Center および File Exchange で Linear Algebra についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!