How to calculate the standard error estimation when using fit from curve fitting toolbox?
134 ビュー (過去 30 日間)
古いコメントを表示
Is is possible to calculate the standard error estimation when using fit from curve fitting toolbox as in polyfit?
Suppose I have 2 vector (x, y). Using polyfit and polyval gives the standard error estimation for all predictions.
How to calculate delta in fit? I need the prediction interval like examples below.
I assume the delta in polyval is not a scalar but varies with x. (Purhaps it is not?)
Example from the documention,
x = 1:100;
y = -0.3*x + 2*randn(1,100);
[p,S] = polyfit(x,y,1);
[y_fit,delta] = polyval(p,x,S);
plot(x,y,'bo')
hold on
plot(x,y_fit,'r-')
plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--')
title('Linear Fit of Data with 95% Prediction Interval')
legend('Data','Linear Fit','95% Prediction Interval')
0 件のコメント
採用された回答
Star Strider
2021 年 7 月 22 日
x = linspace(0, 100, 100);
y = -0.3*x + 2*randn(1,100);
[f,gof,out] = fit(x(:), y(:), 'poly1')
ci = predint(f, x);
figure
plot(f, x, y)
hold on
plot(x, ci, '--')
hold off
grid
hl = legend;
hl.String{3} = 'Lower 95% CI';
hl.String{4} = 'Upper 95% CI';
.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Interpolation についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!