How are the folds of a 10-fold cross-validated decision tree combined to make the final tree?

3 ビュー (過去 30 日間)
Hello all,
I am creating a hyper-parameter-optimized decision tree:
part = cvpartition(features.label, "KFold", 10);
opt = struct("CVPartition", part);
mytree = fitctree(features, 'label', 'MaxNumSplits', 10, 'OptimizeHyperparameters' , 'SplitCriterion', 'HyperparameterOptimizationOptions', opt);
So, as I understand, 10 folds are created. For each fold, 90% of the data is used to train a decision tree that is evaluated on the remaining 10% of the data. I have two questions:
Question 1: How is this 90/10 split created? Sequential entries from the feature matrix? Random entries from the feature matrix?
Quesiton 2: How are the 10 decision trees combined/merged to create the final decision tree?
Thank you

回答 (0 件)

カテゴリ

Help Center および File ExchangeClassification Ensembles についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by