How can I add new images to a trained deep learning network to classify new images ?
1 回表示 (過去 30 日間)
古いコメントを表示
Hi,
I used the following code to train a network for image classification. I want to know how can I keep training the new network with the already added images ?
imds = imageDatastore('Images','IncludeSubfolders',true,'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
net = resnet18;
numClasses = numel(categories(imdsTrain.Labels));
lgraph = layerGraph(net);
newFCLayer = fullyConnectedLayer(numClasses,'Name','new_fc','WeightLearnRateFactor',10,'BiasLearnRateFactor',10);
lgraph = replaceLayer(lgraph,'fc1000',newFCLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
inputSize = net.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',8, ...
'InitialLearnRate',0.0001, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',8, ...
'Verbose',false, ...
'Plots','training-progress');
trainedNet = trainNetwork(augimdsTrain,lgraph,options);
YPred = classify(trainedNet,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels)
0 件のコメント
回答 (1 件)
Chetan Gupta
2021 年 7 月 13 日
Hi Thushyanthan,
I understand that you intend to train the neural network with imdsTrain for a larger number of iterations. You can do that by increasing the ‘MaxEpochs’ value in trainingOptions to some value larger than 8.
You can refer to Options for training deep learning neural network - MATLAB trainingOptions (mathworks.com) for more information about Epochs and other training options.
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!