Can this differential equation be solved using matlab pdepe solver?
4 ビュー (過去 30 日間)
古いコメントを表示
I'm looking to solve the PDE given below:
d2y/dx2 - y + f(x,t) = dy/dt
here - f(x,t) is a source term depending on location "x" and time "t"
Initial Condition: y(x,0) = 0
Boundary condition: y(x=0, t) = 0
y(x=L, t) = -dy/dx (robin boundary condition or mixed boundary condition at x = L; this is for convection)
Can this be solved using matlab's pdepe solver? If so, how? If not, what toolbox/command is needed to solve this type of PDE?
0 件のコメント
回答 (1 件)
Amit Bhowmick
2021 年 7 月 1 日
Look at this
https://in.mathworks.com/help/matlab/math/partial-differential-equations.html
2 件のコメント
Amit Bhowmick
2021 年 7 月 1 日
編集済み: Amit Bhowmick
2021 年 7 月 1 日
With y term you can solve, s would be s=-y+f(x,t), not sure about robin boundary conditions.
参考
カテゴリ
Help Center および File Exchange で PDE Solvers についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!