Circle plotting on different Planes
26 ビュー (過去 30 日間)
古いコメントを表示
Hey,
I am trying to plot a series of 2D circle in a 3D plot, which are all on slightly different planes (orientated at different angles).
The information I have is;
Centers of the circles;
X = [2 4 5 7];
Y = [0 2 1 0];
Z = [1 3 5 7];
The radii for the circles are the same at 0.5 units.
When I plot these circles I want to see them orientated so that the normal from each circle is pointing in the direction of the next circle. In other words, the plane the circle is drawn on will be perpendicular to the line joining the centers.
the final picture would look like a small section of a pipe.
How could I achieve this?
All help is greatly appreciated.
0 件のコメント
採用された回答
Attila
2013 年 9 月 10 日
編集済み: Attila
2013 年 9 月 10 日
Hi,
so your problem is more like math-related right?
If you already have the coordinates of the unoriented circle points, you should multiply them with the result of this, like
Rotated = Rx * Ry * Rz * original
(first circle with the first 3 matrices, etc):
clear all, close all, clc
X = [2 4 5 7];
Y = [0 2 1 0];
Z = [1 3 5 7];
r = 0.5
Coords = [X;Y;Z]
Coords_inc = Coords;
Coords_inc(:,3) = Coords(:,4) - Coords(:,3);
Coords_inc(:,2) = Coords(:,3) - Coords(:,2);
Coords_inc(:,1) = Coords(:,2) - Coords(:,1)
x = 1;
y = 2;
z = 3;
hold on
color = ['r' 'g' 'b' 'k'];
theta = -atan(Coords_inc(y,:)./Coords_inc(z,:)); % angle around x
phi = atan(Coords_inc(x,:)./Coords_inc(z,:));% angle 2 (y)
psi = atan(Coords_inc(y,:)./Coords_inc(x,:));% angle 3 (z)
for i=1:4
Rx = [1 0 0; 0 cos(theta(i)) -sin(theta(i)); 0 sin(theta(i)) cos(theta(i))]
Ry = [cos(phi(i)) 0 sin(phi(i)); 0 1 0; -sin(phi(i)) 0 cos(phi(i))]
Rz = [cos(psi(i)) -sin(psi(i)) 0; sin(psi(i)) cos(psi(i)) 0; 0 0 1]
t = 0:0.1:2*pi
x = cos(t)
y = sin(t)
z = zeros(1,length(t))
tol = [X(i); Y(i); Z(i)]
base = [x;y;z]
rotated = Rx*Ry*Rz*base
plot3(rotated(1,:)+X(i),rotated(2,:)+Y(i),rotated(3,:)+Z(i), color(i))
axis equal
end
This code snippet calculates the required orientations and then builds the required rotation matrices.
その他の回答 (2 件)
Matt J
2013 年 9 月 10 日
You could start by plotting a prototype circle in the xy plane. Then roto-translate them in 3D using a transformation
R*points + t
where R is a 3x3 rotation matrix and t is a translation vector. This FEX file might help with that
Finally, use scatter3() to plot the transformed points.
Grzegorz Knor
2013 年 9 月 10 日
編集済み: Grzegorz Knor
2013 年 9 月 10 日
Try this code:
X = [2 4 5 7];
Y = [0 2 1 0];
Z = [1 3 5 7];
r = 0.5;
[x,y,z] = cylinder(r*ones(size(X)),100);
hold on
for k=length(X):-1:1
x(k,:) = x(k,:)+X(k);
y(k,:) = y(k,:)+Y(k);
z(k,:) = z(k,:)+Z(k);
h(k) = plot3(x(k,:),y(k,:),z(k,:),'r-');
direction = rand(1,3);
alpha = randi(90);
rotate(h(k),direction,alpha)
end
hold off
view(3)
axis equal
I've used random rotation directions and angles. Just calculate the proper values and replace in the code above.
3 件のコメント
Grzegorz Knor
2013 年 9 月 10 日
First of all there is a small mistake, should be:
z(k,:) = Z(k);
instead of:
z(k,:) = z(k,:)+Z(k);
Each circle should be perpendicular to the line connecting its center point with the center point of the next circle, right? And what about last circle and its orientation?
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!