How can I use lorentzian norm in 2D gray scale image segmentation?
2 ビュー (過去 30 日間)
古いコメントを表示
I'm working on 2D image segmentation & I want to refine the image with lorentz as a preprocessing operation.
lorentzian norm equation is:
f(x)= sum(log(1+0.5(x/T))), where "x" is a distance.
my problem is how can I calculate the distance "x".
is it the distance between center pixel and just one neighbor?
or it's the distance between this pixel and its 8-neighbors?
"or is it the maximum or minimum distance"?
thanks
0 件のコメント
採用された回答
Youssef Khmou
2013 年 9 月 7 日
編集済み: Youssef Khmou
2013 年 9 月 7 日
rasha
Lorentizian metric requires 4 dimensions x,y,z,t, but here for image processing the matrix is 2D so then where there is sum in your Function replicate it to 2 sums , try to discuss this prototype :
X=im2double(imread('circuit.tif'));
T=norm(X) ; % random number chosen here to be euclidean norm
FX=sum(sum(log(1+0.5*X/T)))
その他の回答 (1 件)
Image Analyst
2013 年 9 月 7 日
I have no idea. If you don't either, then why are you so sure you want to do it?
17 件のコメント
参考
カテゴリ
Help Center および File Exchange で Image Processing Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!