How Can I plot Streamlines for the following code. You can reduce the time steps to save your time. Thanks!
5 ビュー (過去 30 日間)
古いコメントを表示
clc
clear all
close all
M = 1000; N = 40;
xE = M/N; yE = N/N;
dx = xE/M; dy = yE/N;
x = 0:dx:xE;
y = 0:dy:yE;
tfinal = 4000;
twall = 1.0;
u0 = 0.2;
nu = 0.02;
Cs = 1/sqrt(3);
omega = 1/(nu/Cs^2 + 0.5);
Re = u0*N/nu;
w=[1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36 4/9];
cx = [1 0 -1 0 1 -1 -1 1 0];
cy = [0 1 0 -1 1 1 -1 -1 0];
f = zeros(M+1,N+1,9);
feq = f;
rho = ones(M+1,N+1);
u = zeros(M+1,N+1);
v = u;
% Velocity Boundary Conditions
u_east = 0.0; v_east = 0.0;
u_west = u0; v_west = 0.0;
u_north = 0.0; v_north = 0.0;
u_south = 0.0; v_south = 0.0;
u(1,:) = u_west; v(1,:) = v_west;
u(M+1,:) = u_east; v(M+1,:) = v_east;
u(:,1) = u_south; v(:,1) = v_south;
u(:,N+1) = u_north; v(:,N+1) = v_north;
% LBM Simulation
tic
for t = 1:tfinal
[f] = collision(M,N,cx,cy,w,omega,rho,f,u,v);
[f] = stream(f);
[f] = BConditions(M,N,f,u_west);
[rho,u,v] = res(M,N,f);
end
toc
% Plotting
for i = 1:M+1
for j = 1:N+1
U(i,j) = sqrt(u(i,j) + v(i,j));
end
end
for j = 1:N+1
u1(j) = u(M/2,j)/u0;
end
for i = 1:M+1
v1(i) = v(i,N/2)/u0;
end
figure(1)
contourf(u')
colorbar;
title('Velocity Distribution')
figure(2)
plot(y,u1,'b');
grid on;
title('Horizontal Velocity Distribution along the x = 0.5')
xlabel('y')
ylabel('u')
% figure(3)
% plot(x,v1,'r');
% grid on;
% title('Vertical Velocity Distribution along the y = 0.5')
% xlabel('x')
% ylabel('v')
% ---------------------------------------------------------------------
function [f] = collision(M,N,cx,cy,w,omega,rho,f,u,v)
for i = 1:M+1
for j = 1:N+1
t1 = u(i,j)*u(i,j) + v(i,j)*v(i,j);
for k = 1:9
t2 = cx(k)*u(i,j) + cy(k)*v(i,j);
feq(i,j,k) = w(k)*(rho(i,j))*(1.0 + 3.0*t2 + (9/2)*t2^2 - (3/2)*t1);
f(i,j,k) = (1-omega)*f(i,j,k) + omega*feq(i,j,k);
end
end
end
end
%----------------------------------------------------------------------
function [f] = stream(f)
f(:,:,1)=circshift( squeeze(f(:,:,1)), [+1,+0] );
f(:,:,2)=circshift( squeeze(f(:,:,2)), [+0,+1] );
f(:,:,3)=circshift( squeeze(f(:,:,3)), [-1,+0] );
f(:,:,4)=circshift( squeeze(f(:,:,4)), [+0,-1] );
f(:,:,5)=circshift( squeeze(f(:,:,5)), [+1,+1] );
f(:,:,6)=circshift( squeeze(f(:,:,6)), [-1,+1] );
f(:,:,7)=circshift( squeeze(f(:,:,7)), [-1,-1] );
f(:,:,8)=circshift( squeeze(f(:,:,8)), [+1,-1] );
end
%----------------------------------------------------------------------
function [f] = BConditions(M,N,f,u_west)
% Top Wall and Bottom Wall
for i = 1:M+1
f(i,N+1,4) = f(i,N+1,2);
f(i,N+1,7) = f(i,N+1,5);
f(i,N+1,8) = f(i,N+1,6);
f(i,1,2) = f(i,1,4);
f(i,1,5) = f(i,1,7);
f(i,1,6) = f(i,1,8);
end
% Right Wall
for j = 2:N
f(N+1,j,3) = f(N,j,3);
f(N+1,j,6) = f(N,j,6);
f(N+1,j,7) = f(N,j,7);
end
% Left Wall
for j = 2:N
rhow(1,j) = (f(1,j,9) + f(1,j,2) + f(1,j,4) + 2*(f(1,j,3) + f(1,j,6) + f(1,j,7)))/(1-u_west);
f(1,j,1) = f(1,j,3) + (2/3)*rhow(1,j)*u_west;
f(1,j,5) = f(1,j,7) + rhow(1,j)*u_west/6;
f(1,j,8) = f(1,j,6) + rhow(1,j)*u_west/6;
end
end
%-------------------------------------------------------------------------------
function [rho,u,v] = res(M,N,f)
rho = sum(f,3);
% for j = 1:N+1
% rho(1,j) = (f(1,j,9) + f(1,j,2) + f(1,j,4) + 2*(f(1,j,3) + f(1,j,6) + f(1,j,7)))/(1-0.2);
% end
u = (sum(f(:,:,[1 5 8]),3) - sum(f(:,:,[3 6 7]),3))./rho;
v = (sum(f(:,:,[2 5 6]),3) - sum(f(:,:,[4 7 8]),3))./rho;
end
3 件のコメント
Cris LaPierre
2021 年 5 月 29 日
The code you shared does not use the streamline function. Share the code that is giving you an error, as well as the full text of that error.
採用された回答
Cris LaPierre
2021 年 5 月 29 日
編集済み: Cris LaPierre
2021 年 5 月 30 日
To use streamlines, you need a grid of x and y vertices, a grid of u and v vector components, and 'seed' x and y values for where the streamline(s) should start. Your code creates x,y,u and v variables, so here's what streamlines might look like. Note that since u and v are small, the streamlines don't show much deviation from horizontal.
Since it takes almost an hour for your code to run, I'm just loading the final variables for this example.
load MYvars
% create grid
[X,Y] = meshgrid(y,x);
% Quiver plot to show vector field
quiver(X,Y,u,v)
% Now show streamlines
figure
streamline(X,Y,u,v,ones(1,6)*0.1,[0 5 10 15 20 25])
3 件のコメント
Cris LaPierre
2021 年 5 月 30 日
You can use non-uniform grids to create X and Y. However, X and Y need to be matrices of the same size, and U and V also need to be the same size and X and Y. Your startx and starty must be the same size, but this can be a single point, a vector, or a matrix. This is just the starting point(s) of a streamline. The actual line is drawn automatically following the vectors created by U and V.
Perhaps these answers may be insightful
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Assembly についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

