How to predict the output from a classifier model?

7 ビュー (過去 30 日間)
Jimmy Neutron
Jimmy Neutron 2021 年 5 月 25 日
I have used the classification learner to train image data using a SVM. The output shows it to be 95% and the confusion matrix looks as follows:
When I export the model and try to predict the Image features in matlab I get a confusion matrix as the one below, which seems weird and makes me believe I am doing something incorrect. Could someone please help?
% Training Data
imset = imageSet('HOG\Train_Diff','recursive');
bag = bagOfFeatures(imset);
imageFeatures = encode(bag, imset);
signData = array2table(imageFeatures);
signData.signType = getImageLabels(imset);
% Test Data
imsetTest = imageSet('HOG\Test_Diff','recursive');
bagTest = bagOfFeatures(imsetTest);
imageFeaturesTest = encode(bagTest, imsetTest);
signDataTest = array2table(imageFeaturesTest);
signDataTest.signType = getImageLabels(imsetTest);
%% Classification
classificationLearner
%% Test Data Confusion matrix
model = trainedModel.ClassificationSVM;
predictedLabels = predict(model, imageFeaturesTest);
testLabels = signDataTest.signType;
plotconfusion(testLabels,predictedLabels)

回答 (0 件)

カテゴリ

Help Center および File ExchangeDeep Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by