Calculate confidence interval of data sets.

4 ビュー (過去 30 日間)
Rajvi Amle
Rajvi Amle 2021 年 5 月 23 日
コメント済み: dpb 2021 年 5 月 23 日
I have n=10 and calculated random values with two variables (SYSTEM.m_BW and SYSTEM.w_L). 2 ODEs and a loop is mentioned to run for every 10 iterations (for i=1:10) and plotted the graph for the same. Now I want to calculate mean of all the lines from the plot of simulated data (x(:,2)+x(:,1)) mentioned in the loop, then save x & t (time span) in a matrix to calculate and plot confidence interval from the simulated data given in the code (x(:,2)+x(:,1)) for every x= 1 to 10 lines. How do I calculate the mean of all the lines in the plot and how do I calculate confidence interval based on the mean and standard deviation of the data points? I want the graph something as given in attached graph with confidence interval of 95% calculated from mean shown with the upper and lower boundaries.
Could someone please help me with this, it would be really helpful and appreciated. Following is the given code, i have worked on so far:
function toy_example
clear all;
close all;
clc;
% Body weight and organ weight fraction [Min Max] (random numbers for 10 mice)
%Min=a
%Max=b
%r=a+(b-a)*r(n,1);
n=10;
SYSTEM.m_BW= 24+(28-24).*rand(10,1); % Body weight [g]
SYSTEM.w_L= 0.0417+(0.0681-0.0417).*rand(10,1); % Liver [g/g]
SYSTEM.w_S= 0.019+(0.0051-0.0019).*rand(10,1); % Spleen [g/g]
SYSTEM.w_K= 0.015+(0.0184-0.015).*rand(10,1); % Kidney [g/g]
SYSTEM.w_Lu= 0.0065+(0.0081-0.0065).*rand(10,1); % Lung [g/g]
SYSTEM.w_BR= 0.0139+(0.0191-0.0139).*rand(10,1); % Brain [g/g]
SYSTEM.w_Blood= 0.049+(0.049-0.049).*rand(10,1); % Blood [g/g]
SYSTEM.w_Plasma= 0.029+(0.029-0.029).*rand(10,1); % Plasma [g/g]
EXP.t=[0 6 12 18 24]; %h (time for blood pharmacokinetics)
DRUG.w_Au_iv = [15E-03 183E-03 693E-03 1058E-03]; %[mg/g]
DRUG.m_Au_iv = DRUG.w_Au_iv.*SYSTEM.m_BW(1); %[mg]
EXP.Blood_15=(([16.32 3.8 2.87 2.33 2.06]/100).*SYSTEM.m_BW.*SYSTEM.w_Plasma.*DRUG.w_Au_iv(1).*SYSTEM.m_BW)./(SYSTEM.m_BW.*SYSTEM.w_Plasma);
EXP.Blood_183=(([31.3 1.48 0.98 0.84 0.8]/100).*SYSTEM.m_BW.*SYSTEM.w_Plasma.*DRUG.w_Au_iv(2).*SYSTEM.m_BW)./(SYSTEM.m_BW.*SYSTEM.w_Plasma);
EXP.Blood_1058=(([57.82 0.42 0.35 0.35 0.35]/100).*SYSTEM.m_BW.*SYSTEM.w_Plasma.*DRUG.w_Au_iv(4).*SYSTEM.m_BW)./(SYSTEM.m_BW.*SYSTEM.w_Plasma);
figure
hold on
for i=1:10
tspan=[0:24];
MAT=[SYSTEM.m_BW(i) SYSTEM.w_L(i)]';
x0=zeros(2,1);
tic;
[t,x]=ode15s(@ode_toy, tspan, x0, [ ], MAT);
toc;
plot(t,(x(:,2)+x(:,1)),'-.','Color', 'blue', 'LineWidth', 2)
end
end
function dxdt = ode_toy(t,x,SYSTEM)
%% Split State Vector
m_BW=SYSTEM(1);
w_L=SYSTEM(2);
m_Au_A=x(1);
m_Au_V=x(2);
%% ODE system
% Dosing
dm_Au_A_dt=m_BW - w_L*m_Au_A;
dx(1) = dm_Au_A_dt;
dm_Au_V_dt= w_L - m_BW*m_Au_V;
dx(2) = dm_Au_V_dt;
dxdt = dx(:);
end
  3 件のコメント
Rajvi Amle
Rajvi Amle 2021 年 5 月 23 日
Thank you for your response @dpb. However I am new on Matlab, could you please show me an example of saving x,t results in a cell array or a vector? I used a code as C=cell(10,1); before the for loop as shown below.
C=cell(10,1);
figure
hold on
for i=1:10
tspan=[0:24];
MAT=[SYSTEM.m_BW(i) SYSTEM.w_L(i)]';
x0=zeros(2,1);
tic;
[t,x]=ode15s(@ode_toy, tspan, x0,[], MAT);
toc;
plot(t,(x(:,2)+x(:,1)),'-.','Color', 'blue', 'LineWidth', 2)
end
Also, I didn't understand what you explained to derive confidence interval. If possible, could you please show that too with an example?
dpb
dpb 2021 年 5 月 23 日
I'm really pressed for time, so the following is untested "air code" typed in here...hopefully it'll be enough to give you the idea...
t=cell(1,10); y=t; % preallocate the output cell arrays as row to hold column vectors
figure
hold on
tspan=[0:24]; % invariant, don't need in loop
for i=1:10
MAT=[SYSTEM.m_BW(i) SYSTEM.w_L(i)]';
x0=zeros(2,1);
[t{i},x]=ode15s(@ode_toy, tspan, x0,[], MAT); % assign output to cell arrays
y{i}=(x(:,2)+x(:,1); % compute, save y also
plot(t{i},y{i},'-.','Color', 'blue', 'LineWidth', 2)
end
IFF the returned t vector is the same for every iteration, then you can convert it to a single vector as would all be redundant and turn y into a normal 2D array.
Then the mean, sd of mean would be
mny=mean(cell2mat(y),2); % convert cell array to matrix, mean by row
sdmny=mny/size(y,2); % std dev of mean(y) is mean(y)/nObs

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeSmoothing and Denoising についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by