Generating a particular sequnce of numbers

2 ビュー (過去 30 日間)
Adi gahlawat
Adi gahlawat 2013 年 7 月 27 日
Hi,
given a variable natural number d, I'm trying to generate a sequence of the form:
[1 2 1 3 2 1 4 3 2 1.......d d-1 d-2......3 2 1].
I don't want to use for loop for this process, does anyone know a better (faster) method. I tried the colon operator without any success.
Thank you.
Adi

採用された回答

Azzi Abdelmalek
Azzi Abdelmalek 2013 年 7 月 27 日
編集済み: Azzi Abdelmalek 2013 年 7 月 27 日
d=4
cell2mat(arrayfun(@(x) x:-1:1,1:d,'un',0))
  7 件のコメント
Youssef  Khmou
Youssef Khmou 2013 年 7 月 27 日
ok thank you for the explanation .
Jan
Jan 2013 年 7 月 28 日
Azzi's for loop approach is faster.

サインインしてコメントする。

その他の回答 (6 件)

Roger Stafford
Roger Stafford 2013 年 7 月 27 日
Here's another method to try:
N = d*(d+1)/2;
A = zeros(1,N);
n = 1:d;
A((n.^2-n+2)/2) = n;
A = cumsum(A)-(1:N)+1;
  1 件のコメント
Adi gahlawat
Adi gahlawat 2013 年 7 月 27 日
編集済み: Adi gahlawat 2013 年 7 月 27 日
Hi Roger,
your method is excellent. It's about 2 times faster than my for loop based code. Much obliged.
Adi

サインインしてコメントする。


Azzi Abdelmalek
Azzi Abdelmalek 2013 年 7 月 28 日
編集済み: Azzi Abdelmalek 2013 年 7 月 28 日
Edit
This is twice faster then Stafford's answer
A4=zeros(1,d*(d+1)/2); % Pre-allocate
c=0;
for k=1:d
A4(c+1:c+k)=k:-1:1;
c=c+k;
end
  1 件のコメント
Jan
Jan 2013 年 7 月 28 日
編集済み: Jan 2013 年 7 月 28 日
Yes, this is exactly the kind of simplicity, which runs fast. While the one-liners with anonymous functions processed by cellfun or arrayfun look sophisticated, such basic loops hit the point. +1
I'd replace sum(1:d) by: d*(d+1)/2 . Anbd you can omit idx.

サインインしてコメントする。


Richard Brown
Richard Brown 2013 年 7 月 29 日
Even faster:
k = 1;
n = d*(d+1)/2;
out = zeros(n, 1);
for i = 1:d
for j = i:-1:1
out(k) = j;
k = k + 1;
end
end
  7 件のコメント
Jan
Jan 2013 年 7 月 29 日
編集済み: Jan 2013 年 7 月 29 日
Under R2011b I get for d=1000 and 500 repetitions:
Elapsed time is 3.466296 seconds. Azzi's loop
Elapsed time is 3.765340 seconds. Richard's double loop
Elapsed time is 1.897343 seconds. C-Mex (see my answer)
Richard Brown
Richard Brown 2013 年 7 月 29 日
編集済み: Richard Brown 2013 年 7 月 29 日
I checked again, and I agree with Azzi. My method was running faster because of another case I had in between his and mine. The JIT was doing some kind of unanticipated optimisation between cases.
I get similar orders of magnitude results to Azzi for R2012a if I remove that case, and if I run in R2013a (Linux), his method is twice as fast.
Shame, I like it when JIT brings performance of completely naive loops up to vectorised speed :)

サインインしてコメントする。


Jan
Jan 2013 年 7 月 29 日
An finally the C-Mex:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
mwSize d, i, j;
double *r;
d = (mwSize) mxGetScalar(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(1, d * (d + 1) / 2, mxREAL);
r = mxGetPr(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
And if your number d can be limited to 65535, the times shrink from 1.9 to 0.34 seconds:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
uint16_T d, i, j, *r;
d = (uint16_T) mxGetScalar(prhs[0]);
plhs[0] = mxCreateNumericMatrix(1, d * (d + 1) / 2, mxUINT16_CLASS, mxREAL);
r = (uint16_T *) mxGetData(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
For UINT32 0.89 seconds are required.
  1 件のコメント
Richard Brown
Richard Brown 2013 年 7 月 29 日
Nice. I imagine d would be limited to less than 65535, that's a pretty huge vector otherwise

サインインしてコメントする。


Richard Brown
Richard Brown 2013 年 7 月 29 日
編集済み: Richard Brown 2013 年 7 月 29 日
Also comparable, but not (quite) faster
n = 1:(d*(d+1)/2);
a = ceil(0.5*(-1 + sqrt(1 + 8*n)));
out = a.*(a + 1)/2 - n + 1;
  3 件のコメント
Jan
Jan 2013 年 7 月 29 日
@Richard: How did you find this formula?
Richard Brown
Richard Brown 2013 年 7 月 29 日
If you look at the sequence, and add 0, 1, 2, 3, 4 ... you get
n: 1 2 3 4 5 6 7 8 9 10
1 3 3 6 6 6 10 10 10 10
Note that these are the triangular numbers, and that the triangular numbers 1, 3, 6, 10 appear in their corresponding positions, The a-th triangular number is given by
n = a (a + 1) / 2
So if you solve this quadratic for a where n is a triangular number, you get the index of the triangular number. If you do this for a value of n in between two triangular numbers, you can round this up, and invert the formula to get the nearest triangular number above (which is what the sequence is). Finally, you just subtract the sequence 0, 1, 2, ... to recover the original one.

サインインしてコメントする。


Andrei Bobrov
Andrei Bobrov 2013 年 7 月 27 日
編集済み: Andrei Bobrov 2013 年 7 月 30 日
out = nonzeros(triu(toeplitz(1:d)));
or
out = bsxfun(@minus,1:d,(0:d-1)');
out = out(out>0);
or
z = 1:d;
z2 = cumsum(z);
z1 = z2 - z + 1;
for jj = d:-1:1
out(z1(jj):z2(jj)) = jj:-1:1;
end
or
out = ones(d*(d+1)/2,1);
ii = cumsum(d:-1:1) - (d:-1:1) + 1;
out(ii(2:end)) = 1-d : -1;
out = flipud(cumsum(out));

カテゴリ

Help Center および File ExchangePerformance and Memory についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by