How can I plot the Temperature distribution in this code.

3 ビュー (過去 30 日間)
Mahendra Yadav
Mahendra Yadav 2021 年 5 月 14 日
コメント済み: Mahendra Yadav 2021 年 5 月 14 日
% LBM 3D - D3Q15 Heat Diffusion in a Plate
% Problem - 5.10
clc
clear variables
close all
alpha = 0.25;
Cs = 1/sqrt(3);
omega = 1/(alpha/Cs^2 + 0.5);
% Domain Discretization
L = 40; M = 40; N = 40;
xE = 40; yE = 40; zE = 40;
dx = 1; dy = 1; dz = 1;
x = 0:dx:xE;
y = 0:dy:yE;
z = 0:dz:zE;
tfinal = 200;
dt = 1.0;
twall = 1.0;
% Weights
w0 = 2/9;
w = [1/9,1/9,1/9,1/9,1/9,1/9,1/72,1/72,1/72,1/72,1/72,1/72,1/72,1/72];
% Distribution Functions
f0 = zeros(L+1,M+1,N+1);
f0eq = zeros(L+1,M+1,N+1);
f = zeros(L+1,M+1,N+1,14);
feq = zeros(L+1,M+1,N+1,14);
T = zeros(L+1,M+1,N+1);
% Initially When system is at rest
for i = 1:L+1
for j = 1:M+1
for k = 1:N+1
f0(i,j,k) = w0*T(i,j,k);
for p = 1:14
f(i,j,k,p) = w(p)*T(i,j,k);
end
end
end
end
%-----------------------------------------------------------------------------------------
% LBM Simulation
for t = 1:tfinal
% Collision
for i = 1:L+1
for j = 1:M+1
for k = 1:N+1
f0eq(i,j,k) = w0*T(i,j,k);
f0(i,j,k) = (1-omega)*f0(i,j,k) + omega*f0eq(i,j,k);
for p = 1:14
feq(i,j,k,p) = w(p)*T(i,j,k);
f(i,j,k,p) = (1-omega)*f(i,j,k,p) + omega*feq(i,j,k,p);
end
end
end
end
% Streaming
f(:,:,:,1) = circshift(squeeze(f(:,:,:,1)),[+1,0,0]);
f(:,:,:,2) = circshift(squeeze(f(:,:,:,2)),[-1,0,0]);
f(:,:,:,3) = circshift(squeeze(f(:,:,:,3)),[0,+1,0]);
f(:,:,:,4) = circshift(squeeze(f(:,:,:,4)),[0,-1,0]);
f(:,:,:,5) = circshift(squeeze(f(:,:,:,5)),[0,0,+1]);
f(:,:,:,6) = circshift(squeeze(f(:,:,:,6)),[0,0,-1]);
f(:,:,:,7) = circshift(squeeze(f(:,:,:,7)),[+1,+1,+1]);
f(:,:,:,8) = circshift(squeeze(f(:,:,:,8)),[-1,-1,-1]);
f(:,:,:,9) = circshift(squeeze(f(:,:,:,9)),[+1,+1,-1]);
f(:,:,:,10) = circshift(squeeze(f(:,:,:,10)),[-1,-1,+1]);
f(:,:,:,11) = circshift(squeeze(f(:,:,:,11)),[-1,+1,-1]);
f(:,:,:,12) = circshift(squeeze(f(:,:,:,12)),[+1,-1,+1]);
f(:,:,:,13) = circshift(squeeze(f(:,:,:,13)),[-1,+1,+1]);
f(:,:,:,14) = circshift(squeeze(f(:,:,:,14)),[+1,-1,-1]);
% Boundary Conditions
% Left Wall
for j = 1:M+1
for k = 1:N+1
f(1,j,k,1) = w(1)*twall + w(2)*twall - f(1,j,k,2);
f(1,j,k,5) = w(5)*twall + w(6)*twall - f(1,j,k,6);
f(1,j,k,7) = w(7)*twall + w(8)*twall - f(1,j,k,8);
f(1,j,k,9) = w(9)*twall + w(10)*twall - f(1,j,k,10);
f(1,j,k,12) = w(12)*twall + w(11)*twall - f(1,j,k,11);
f(1,j,k,14) = w(14)*twall + w(13)*twall - f(1,j,k,13);
end
end
% Bottom Wall (Bounce Back) {Adiabatic Boundary Conditions)
for i = 1:L+1
for k = 1:N+1
f(i,1,k,3) = f(i,2,k,3);
f(i,1,k,5) = f(i,2,k,5);
f(i,1,k,7) = f(i,2,k,7);
f(i,1,k,9) = f(i,2,k,9);
f(i,1,k,11) = f(i,2,k,11);
f(i,1,k,13) = f(i,2,k,13);
end
end
% Right Wall (Constant Temperature T = 0.0)
for j= 1:M+1
for k = 1:N+1
f(L+1,j,k,2) = -f(L+1,j,k,1);
f(L+1,j,k,6) = -f(L+1,j,k,5);
f(L+1,j,k,8) = -f(L+1,j,k,7);
f(L+1,j,k,10) = -f(L+1,j,k,9);
f(L+1,j,k,11) = -f(L+1,j,k,12);
f(L+1,j,k,13) = -f(L+1,j,k,14);
end
end
% Top Wall (Constant Temperature T = 0.0)
for i = L+1
for k = 1:N+1
f(i,M+1,k,4) = -f(i,M+1,k,3);
f(i,M+1,k,6) = -f(i,M+1,k,5);
f(i,M+1,k,8) = -f(i,M+1,k,7);
f(i,M+1,k,10) = -f(i,M+1,k,9);
f(i,M+1,k,12) = -f(i,M+1,k,11);
f(i,M+1,k,14) = -f(i,M+1,k,13);
end
end
% Front Wall (Constant Temperature T = 0.0)
for i = 1:L+1
for j = 1:M+1
f(i,j,1,5) = -f(i,j,1,6);
f(i,j,1,7) = -f(i,j,1,8);
f(i,j,1,10) = -f(i,j,1,9);
f(i,j,1,12) = -f(i,j,1,11);
f(i,j,1,13) = -f(i,j,1,14);
% f(i,j,1,5) = -f(i,j,1,6);
end
end
% Backward Wall(Constant Temperature T = 0.0)
for i = 1:L+1
for j = 1:M+1
f(i,j,N+1,6) = -f(i,j,N+1,5);
f(i,j,N+1,8) = -f(i,j,N+1,7);
f(i,j,N+1,9) = -f(i,j,N+1,10);
f(i,j,N+1,11) = -f(i,j,N+1,12);
f(i,j,N+1,14) = -f(i,j,N+1,13);
end
end
% Final Temperature
for i = 1:L+1
for j = 1:M+1
for k = 1:N+1
sum = 0.0;
for p = 1:14
sum = sum + f(i,j,k,p);
end
T(i,j,k) = f0(i,j,k) + sum;
end
end
end
end

採用された回答

Stephan
Stephan 2021 年 5 月 14 日
編集済み: Stephan 2021 年 5 月 14 日
Play arround with slice:
% LBM 3D - D3Q15 Heat Diffusion in a Plate
% Problem - 5.10
clc
clear variables
close all
alpha = 0.25;
Cs = 1/sqrt(3);
omega = 1/(alpha/Cs^2 + 0.5);
% Domain Discretization
L = 40; M = 40; N = 40;
xE = 40; yE = 40; zE = 40;
dx = 1; dy = 1; dz = 1;
x = 0:dx:xE;
y = 0:dy:yE;
z = 0:dz:zE;
tfinal = 200;
dt = 1.0;
twall = 1.0;
% Weights
w0 = 2/9;
w = [1/9,1/9,1/9,1/9,1/9,1/9,1/72,1/72,1/72,1/72,1/72,1/72,1/72,1/72];
% Distribution Functions
f0 = zeros(L+1,M+1,N+1);
f0eq = zeros(L+1,M+1,N+1);
f = zeros(L+1,M+1,N+1,14);
feq = zeros(L+1,M+1,N+1,14);
T = zeros(L+1,M+1,N+1);
% Initially When system is at rest
for i = 1:L+1
for j = 1:M+1
for k = 1:N+1
f0(i,j,k) = w0*T(i,j,k);
for p = 1:14
f(i,j,k,p) = w(p)*T(i,j,k);
end
end
end
end
%-----------------------------------------------------------------------------------------
% LBM Simulation
for t = 1:tfinal
% Collision
for i = 1:L+1
for j = 1:M+1
for k = 1:N+1
f0eq(i,j,k) = w0*T(i,j,k);
f0(i,j,k) = (1-omega)*f0(i,j,k) + omega*f0eq(i,j,k);
for p = 1:14
feq(i,j,k,p) = w(p)*T(i,j,k);
f(i,j,k,p) = (1-omega)*f(i,j,k,p) + omega*feq(i,j,k,p);
end
end
end
end
% Streaming
f(:,:,:,1) = circshift(squeeze(f(:,:,:,1)),[+1,0,0]);
f(:,:,:,2) = circshift(squeeze(f(:,:,:,2)),[-1,0,0]);
f(:,:,:,3) = circshift(squeeze(f(:,:,:,3)),[0,+1,0]);
f(:,:,:,4) = circshift(squeeze(f(:,:,:,4)),[0,-1,0]);
f(:,:,:,5) = circshift(squeeze(f(:,:,:,5)),[0,0,+1]);
f(:,:,:,6) = circshift(squeeze(f(:,:,:,6)),[0,0,-1]);
f(:,:,:,7) = circshift(squeeze(f(:,:,:,7)),[+1,+1,+1]);
f(:,:,:,8) = circshift(squeeze(f(:,:,:,8)),[-1,-1,-1]);
f(:,:,:,9) = circshift(squeeze(f(:,:,:,9)),[+1,+1,-1]);
f(:,:,:,10) = circshift(squeeze(f(:,:,:,10)),[-1,-1,+1]);
f(:,:,:,11) = circshift(squeeze(f(:,:,:,11)),[-1,+1,-1]);
f(:,:,:,12) = circshift(squeeze(f(:,:,:,12)),[+1,-1,+1]);
f(:,:,:,13) = circshift(squeeze(f(:,:,:,13)),[-1,+1,+1]);
f(:,:,:,14) = circshift(squeeze(f(:,:,:,14)),[+1,-1,-1]);
% Boundary Conditions
% Left Wall
for j = 1:M+1
for k = 1:N+1
f(1,j,k,1) = w(1)*twall + w(2)*twall - f(1,j,k,2);
f(1,j,k,5) = w(5)*twall + w(6)*twall - f(1,j,k,6);
f(1,j,k,7) = w(7)*twall + w(8)*twall - f(1,j,k,8);
f(1,j,k,9) = w(9)*twall + w(10)*twall - f(1,j,k,10);
f(1,j,k,12) = w(12)*twall + w(11)*twall - f(1,j,k,11);
f(1,j,k,14) = w(14)*twall + w(13)*twall - f(1,j,k,13);
end
end
% Bottom Wall (Bounce Back) {Adiabatic Boundary Conditions)
for i = 1:L+1
for k = 1:N+1
f(i,1,k,3) = f(i,2,k,3);
f(i,1,k,5) = f(i,2,k,5);
f(i,1,k,7) = f(i,2,k,7);
f(i,1,k,9) = f(i,2,k,9);
f(i,1,k,11) = f(i,2,k,11);
f(i,1,k,13) = f(i,2,k,13);
end
end
% Right Wall (Constant Temperature T = 0.0)
for j= 1:M+1
for k = 1:N+1
f(L+1,j,k,2) = -f(L+1,j,k,1);
f(L+1,j,k,6) = -f(L+1,j,k,5);
f(L+1,j,k,8) = -f(L+1,j,k,7);
f(L+1,j,k,10) = -f(L+1,j,k,9);
f(L+1,j,k,11) = -f(L+1,j,k,12);
f(L+1,j,k,13) = -f(L+1,j,k,14);
end
end
% Top Wall (Constant Temperature T = 0.0)
for i = L+1
for k = 1:N+1
f(i,M+1,k,4) = -f(i,M+1,k,3);
f(i,M+1,k,6) = -f(i,M+1,k,5);
f(i,M+1,k,8) = -f(i,M+1,k,7);
f(i,M+1,k,10) = -f(i,M+1,k,9);
f(i,M+1,k,12) = -f(i,M+1,k,11);
f(i,M+1,k,14) = -f(i,M+1,k,13);
end
end
% Front Wall (Constant Temperature T = 0.0)
for i = 1:L+1
for j = 1:M+1
f(i,j,1,5) = -f(i,j,1,6);
f(i,j,1,7) = -f(i,j,1,8);
f(i,j,1,10) = -f(i,j,1,9);
f(i,j,1,12) = -f(i,j,1,11);
f(i,j,1,13) = -f(i,j,1,14);
% f(i,j,1,5) = -f(i,j,1,6);
end
end
% Backward Wall(Constant Temperature T = 0.0)
for i = 1:L+1
for j = 1:M+1
f(i,j,N+1,6) = -f(i,j,N+1,5);
f(i,j,N+1,8) = -f(i,j,N+1,7);
f(i,j,N+1,9) = -f(i,j,N+1,10);
f(i,j,N+1,11) = -f(i,j,N+1,12);
f(i,j,N+1,14) = -f(i,j,N+1,13);
end
end
% Final Temperature
for i = 1:L+1
for j = 1:M+1
for k = 1:N+1
sum = 0.0;
for p = 1:14
sum = sum + f(i,j,k,p);
end
T(i,j,k) = f0(i,j,k) + sum;
end
end
end
end
figure
slice(x,y,z,T,0:8:40,[],[],'nearest')
figure
slice(x,y,z,T,[],5,[],'nearest')
figure
slice(x,y,z,T,[10 30],[],20,'nearest')
  3 件のコメント
Stephan
Stephan 2021 年 5 月 14 日
Did you notice that you can accept and/or vote for useful answers?
Mahendra Yadav
Mahendra Yadav 2021 年 5 月 14 日
Okay!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeCreating, Deleting, and Querying Graphics Objects についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by