DAE Problem for implicit method. Discrete dynamic system.

2 ビュー (過去 30 日間)
Cesar García Echeverry
Cesar García Echeverry 2021 年 5 月 8 日
編集済み: Cesar García Echeverry 2021 年 5 月 11 日
%Parameters
Nest=100;
alfa = 1.2;
beta=0.75;
nu=alfa-1;
h = 0.9;
f = 0;
%Initial values
X=zeros(Nest,1);
Y=zeros(Nest,1);
X(1)=f;
Y(Nest)=h;
%Initial conditions to the DAE Method
init1=[X;Y];
tspan=[0 30];
rpar=[alfa,beta,nu,f,h,Nest];
M=[0 1 ;0 0];
options=odeset('Refine',5,'MassSingular','yes','Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
[t,var]=ode15s(@diffX,tspan,init1,options,rpar);
function [vard]=diffX(t,var,rpar)
alfa=rpar(1);
beta=rpar(2);
nu=rpar(3);
f=rpar(4);
h=rpar(5);
Nest=rpar(6);
% var=reshape(var,[Nest,2]);
X=var(1:Nest);
Y=var(Nest+1:end);
for i=2:Nest-1
vard(i,1)=beta.*X(i-1)+Y(i+1)-beta.*X(i)-Y(i);
vard(i,2)=(alfa.*X(i))./(1+nu.*X(i-1));%Y(i+1)+nu.*X(i-1).*Y(i)-alfa.*X(i);
end
vard=reshape(vard,[2*(Nest-1),1]);
vard=[0;vard;Y(Nest)];
% vard=vard';
end
  2 件のコメント
Image Analyst
Image Analyst 2021 年 5 月 8 日
Is that daeic12.m?
Where is line 63 that says
F = UM
Cesar García Echeverry
Cesar García Echeverry 2021 年 5 月 8 日
no, it is an internal function of matlab for solving ode15s

サインインしてコメントする。

採用された回答

Walter Roberson
Walter Roberson 2021 年 5 月 8 日
X=zeros(Nest,1);
Y=zeros(Nest,1);
init1=[X;Y];
So your initial conditions are 2*Nest x 1 and your function must return 2*Nest x 1.
For a mass matrix M then M*y_prime = f(x, y) and f must return 2*Nest x 1 and y_prime must be that size. In order to have M*y_prime be the same size as f(x, y) then M must be a square matrix with rows (and columns) the same size as the number of rows in y_prime. Which is 2*Nest
But does M have that size? No. M is 2x2 and so can only be used if Nest is 1.
  14 件のコメント
Walter Roberson
Walter Roberson 2021 年 5 月 10 日
PDE are often dealt with by dividing an area into discrete domains.
One of your recent questions mentions distillation columns. Physically those are continuous columns -- but subdividing into discrete parts to model behaviour through the column would be a common approach. It is also the most common approach to PDE.
Cesar García Echeverry
Cesar García Echeverry 2021 年 5 月 11 日
No, actually i solved. I used ode15s and ode15i. Defining M or the Jacobian matrix as {[],[eye(np-2) zeros(np-2); zeros(np-2) zeros(np-2)]} and the algebraic systemas as:
for i=2:n+1
res(i-1)=difXcol(i-1)-(sum(Am([1:np]+(i-1)*np).*Ycol)...
+beta*sum(An([1:np]+(i-1)*np).*Xcol(i))...
-beta*Xcol(i)-Ycol(i));
res(i-1+np-2)=Ycol(i)+nu.*Xcol(i).*Ycol(i)-alfa.*Xcol(i);
end
Plus the boundary conditions

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by