Calling Euler Method to solve Shooting Method

11 ビュー (過去 30 日間)
Muhammad Usman
Muhammad Usman 2021 年 5 月 8 日
編集済み: Torsten 2024 年 11 月 24 日
Hi, I am trying to solve a BVP:
y''(x) +5y'(x)+4y(x) = 1 with boundary conditions y(0) = 0 and y(1)=1
using shooting method.
I found many examples by solving such BVP using ode45 but I want to solve it by euler method (not allowed to use built-in command), but I got stuck in doing so.
I need help to do so...
Thanks,

採用された回答

Alan Stevens
Alan Stevens 2021 年 5 月 9 日
You need to express your 2nd order ode as two 1st order odes
y``(x) + 5y`(x) + 4y(x) = 1
v = dy/dx
dv/dx = y``(x)
So you have
y`(x) = v(x)
v`(x) = 1 - 4*y(x) - 5*v(x)
Now your Euer expressions become
t(i) = t(i-1) + h;
y(i) = y(i-1) + h*v(i-1);
v(i) = v(i-1) + h*(1 - 4*y(i-1) - 5*v(i-1));
and you must supply initial values for both y and v.
  4 件のコメント
Fareeha
Fareeha 2024 年 11 月 24 日
how will we use built in command to solve this problem?
Torsten
Torsten 2024 年 11 月 24 日
編集済み: Torsten 2024 年 11 月 24 日
Use "bvp4c" or - for simple problems as the one given - "dsolve".
If you are forced to use the shooting method, combine "ode45" and "fsolve".
syms y(x)
ysol = dsolve(diff(y,2)+5*diff(y,x)+4*y(x)==1,[y(0)==0,y(1)==1])

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by