How can i perform an ADI method on 2d heat equation

14 ビュー (過去 30 日間)
Mohammad Adeeb
Mohammad Adeeb 2021 年 4 月 24 日
コメント済み: skerdi hymeraj 2022 年 8 月 8 日
im trying to slve this equation : 𝜕𝑇 𝜕𝑡 = 𝜕 2𝑇 𝜕𝑥 2 + 𝜕 2𝑇 𝜕𝑦 2
𝑇(𝑥, 𝑦, 0) = 0
𝑇(0, 𝑦,𝑡) = 0
𝑇(1, 𝑦,𝑡) = 0
𝑇(𝑥, 0,𝑡) = 0
(𝑥, 1,𝑡) = 100 sin 𝜋x
so for the first part which is in x direction i did the following :
close all;
clc;
dt = 0.001; %time step
dx = 0.1; %step in x direction
t = 0:dt:15; %time interval (changable due to your desighn)
x = 0:dx:1; %x-axis interval (changable due to your desighn)
lamda=dt/(2*dx^2);
a=(1+2*lamda)*ones(1,13);%define matrix A
A=diag(a); %make matrix a diagonal one
N = length(x)+2; %interval (changable due to your desighn)
for i=1:N-1
A(i+1,i)=-lamda;
A(i,i+1)=-lamda;
end
A(1,1)=1+2*lamda;
A(1,2)=-lamda;
A(13,12)=-lamda;
A(13,13)=1+2*lamda;
T=[]; %Dynamic size array
a2=lamda*ones(1,13);
A2=diag(a);
for j=1:N-3
A2(j+3,j)=(1-2*lamda);
A2(j,j+3)=(1-2*lamda);
end
T(:,:,:) = zeros(length(t),length(y)+2,length(x)+2); %define initial condition
Tstar=zeros(length(x),length(y));
Tall=zeros(length(x),length(y));
for k=2:length(t)
for j=2:length(x)-1
fx=(l-2*lamda)*T(:,j,k-1)+lamda*T(:,j-1,k-1)+lamda*T(:,j+1,k-1);
fx(1)=0;
fx(end)=0;
Tstar(j,:)=(A\fx)';
end
for i=2:length(y)-1
fy=(1-2*lamda)*Tstar(i,:)+lamda*Tstar(i-1,:)+lamda*Tstar(i+1,:);
fy(:,1)=0;
fy(:,end)=100*sin(pi*x(i));
end
Tall(:,j)=A\fy;
T(:,:,k)=Tall(:,:);
end
i've used imaginary node to solve the proplem , also i did the following analysis for the code :
what should i do?
  6 件のコメント
Mohammad Adeeb
Mohammad Adeeb 2021 年 4 月 27 日
.
skerdi hymeraj
skerdi hymeraj 2022 年 8 月 8 日
no code is used

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeMathematics and Optimization についてさらに検索

製品


リリース

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by