.Alternate to using for loop or symsum for the summation ∑(const)^n/(n*n!) ?
1 回表示 (過去 30 日間)
古いコメントを表示
Dear all,
Is there a more computationally efficient way compared to using for loop or symsum (from Symbolic math toolbox) to compute:
∑(const)^n/(n*n!)
const is some constant value, n is the range of limit varying from 1 to infinity (or some high value like 200 for approximating the sum).
-- Thanks, Ram.
2 件のコメント
Sean de Wolski
2013 年 6 月 26 日
編集済み: Sean de Wolski
2013 年 6 月 26 日
Why not symsum? You're going to need it for factorial greater than 170 anyway:
factorial(171)
採用された回答
Roger Stafford
2013 年 6 月 26 日
Your sum is equal to the integral
int('(exp(x)-1)/x','x',0,const)
so you could do numerical integration of this rather than summing the infinite series. That integrand is actually well-behaved in the vicinity of x = 0, but computing it might give you some problems, so you could substitute a Taylor series approximation very near x = 0.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!