## for loop indexing problem

Melissa

### Melissa (view profile)

さんによって質問されました 2013 年 6 月 26 日
Tom

### Tom (view profile)

さんの 回答が採用されました
Good Afternoon All,
I seem to be having trouble with my indexing for a for loop. I am getting the same values every time the loop is executed. I have a 6x6 matrix as an input and data is extracted from each row of the 6x6 matrix to run through my formula to produce the output which should also be a 6x6 matrix.
Any Suggestions?
Dummy Test Data
Mass=276.7;
I=[11.64 15.8 15.69 -.8 3.2 .9];
ModeShapes=[-0.0215 -0.1682 -0.2146 0.1786 0.1355 -0.0028;
0.4662 -0.2614 -0.0813 -0.0772 0.0042 -0.0261;
-0.1276 -0.8945 0.0951 -0.0358 0.0308 0.0024;
1.0000 -0.1792 1.0000 1.0000 -0.1344 0.5292;
0.1440 1.0000 0.5528 -0.4136 1.0000 0.0781;
0.0508 -0.1289 -0.3124 -0.2263 -0.0161 1.0000];
Code:
function [KE_Distribution_Matrix]= Kinetic_Energy_Distribution(Mass,I,ModeShapes)
% User Input
% Mass: Powertrain Mass (kg)
% I: Moment of Inertia Matrix (1x6 dimension) expressed as
% [Ixx,Iyy,Izz,Ixy,Ixz,Iyz]
% ModeShapes: ModeShapes of the given system (6x6 dimension)
% [X_Mode1, Y_Mode1 Z_Mode1, Theta_Mode1, Rho_Mode1, Phi_Mode1
% X_Mode2, Y_Mode2 Z_Mode2, Theta_Mode2, Rho_Mode2, Phi_Mode2
% X_Mode3, Y_Mode3 Z_Mode3, Theta_Mode3, Rho_Mode3, Phi_Mode3
% X_Mode4, Y_Mode4 Z_Mode4, Theta_Mode4, Rho_Mode4, Phi_Mode4
% X_Mode5, Y_Mode5 Z_Mode5, Theta_Mode5, Rho_Mode1, Phi_Mode5
% X_Mode6, Y_Mode1 Z_Mode6, Theta_Mode6, Rho_Mode6, Phi_Mode6]
%
%Extracting Moment of Inertia Values for KE Distribution Calculation
Ixx=I(1);
Iyy=I(2);
Izz=I(3);
%Indexing value for ModeShapes Matrix (6)
n=length(ModeShapes);
%Calculating KE Distribution for each frequency (row)
for i=1:n
%Extracting values from each row of ModeShapes Matrix
X_Mode(i)=ModeShapes(n,1);
Y_Mode(i)=ModeShapes(n,2);
Z_Mode(i)=ModeShapes(n,3);
Theta_Mode(i)=ModeShapes(n,4);
Rho_Mode(i)=ModeShapes(n,5);
Phi_Mode(i)=ModeShapes(n,6);
%Demoninator of the Distribution Calculation
KE_Dom(i)=(Mass*(X_Mode(i)^2+Y_Mode(i)^2+Z_Mode(i)^2)+Ixx*(Theta_Mode(i)^2)+Iyy*(Rho_Mode(i)^2)+Izz*(Phi_Mode(i)^2));
%KE Distribution for each direction
KE_X(i)=(Mass*(X_Mode(i)^2))/KE_Dom(i);
KE_Y(i)=(Mass*(Y_Mode(i)^2))/KE_Dom(i);
KE_Z(i)=(Mass*(Z_Mode(i)^2))/KE_Dom(i);
KE_Theta(i)=(Ixx*(Theta_Mode(i))^2)/KE_Dom(i);
KE_Rho(i)=(Iyy*(Rho_Mode(i))^2)/KE_Dom(i);
KE_Phi(i)=(Izz*(Phi_Mode(i))^2)/KE_Dom(i);
end
% Distribution as a percetange
KE_XF=KE_X*100;
KE_YF=KE_Y*100;
KE_ZF=KE_Z*100;
KE_ThetaF=KE_Theta*100;
KE_RhoF=KE_Rho*100;
KE_PhiF=KE_Phi*100;
%Kinetic Energy Distribution as a Matrix
KE_Distribution_Matrix=[KE_XF; KE_YF; KE_ZF; KE_ThetaF; KE_RhoF; KE_PhiF];
KE_Distribution_Matrix=KE_Distribution_Matrix';

#### 0 件のコメント

サインイン to comment.

## 1 件の回答

### Tom (view profile)

2013 年 6 月 26 日
採用された回答

My guess is that these Ns should be Is:
X_Mode(i)=ModeShapes(n,1);
Y_Mode(i)=ModeShapes(n,2);
Z_Mode(i)=ModeShapes(n,3);
Theta_Mode(i)=ModeShapes(n,4);
Rho_Mode(i)=ModeShapes(n,5);
Phi_Mode(i)=ModeShapes(n,6);

#### 0 件のコメント

サインイン to comment.

Translated by