for loop indexing problem

2 ビュー (過去 30 日間)
Melissa
Melissa 2013 年 6 月 26 日
Good Afternoon All,
I seem to be having trouble with my indexing for a for loop. I am getting the same values every time the loop is executed. I have a 6x6 matrix as an input and data is extracted from each row of the 6x6 matrix to run through my formula to produce the output which should also be a 6x6 matrix.
Any Suggestions?
Dummy Test Data
Mass=276.7;
I=[11.64 15.8 15.69 -.8 3.2 .9];
ModeShapes=[-0.0215 -0.1682 -0.2146 0.1786 0.1355 -0.0028;
0.4662 -0.2614 -0.0813 -0.0772 0.0042 -0.0261;
-0.1276 -0.8945 0.0951 -0.0358 0.0308 0.0024;
1.0000 -0.1792 1.0000 1.0000 -0.1344 0.5292;
0.1440 1.0000 0.5528 -0.4136 1.0000 0.0781;
0.0508 -0.1289 -0.3124 -0.2263 -0.0161 1.0000];
Code:
function [KE_Distribution_Matrix]= Kinetic_Energy_Distribution(Mass,I,ModeShapes)
% User Input
% Mass: Powertrain Mass (kg)
% I: Moment of Inertia Matrix (1x6 dimension) expressed as
% [Ixx,Iyy,Izz,Ixy,Ixz,Iyz]
% ModeShapes: ModeShapes of the given system (6x6 dimension)
% [X_Mode1, Y_Mode1 Z_Mode1, Theta_Mode1, Rho_Mode1, Phi_Mode1
% X_Mode2, Y_Mode2 Z_Mode2, Theta_Mode2, Rho_Mode2, Phi_Mode2
% X_Mode3, Y_Mode3 Z_Mode3, Theta_Mode3, Rho_Mode3, Phi_Mode3
% X_Mode4, Y_Mode4 Z_Mode4, Theta_Mode4, Rho_Mode4, Phi_Mode4
% X_Mode5, Y_Mode5 Z_Mode5, Theta_Mode5, Rho_Mode1, Phi_Mode5
% X_Mode6, Y_Mode1 Z_Mode6, Theta_Mode6, Rho_Mode6, Phi_Mode6]
%
%Extracting Moment of Inertia Values for KE Distribution Calculation
Ixx=I(1);
Iyy=I(2);
Izz=I(3);
%Indexing value for ModeShapes Matrix (6)
n=length(ModeShapes);
%Calculating KE Distribution for each frequency (row)
for i=1:n
%Extracting values from each row of ModeShapes Matrix
X_Mode(i)=ModeShapes(n,1);
Y_Mode(i)=ModeShapes(n,2);
Z_Mode(i)=ModeShapes(n,3);
Theta_Mode(i)=ModeShapes(n,4);
Rho_Mode(i)=ModeShapes(n,5);
Phi_Mode(i)=ModeShapes(n,6);
%Demoninator of the Distribution Calculation
KE_Dom(i)=(Mass*(X_Mode(i)^2+Y_Mode(i)^2+Z_Mode(i)^2)+Ixx*(Theta_Mode(i)^2)+Iyy*(Rho_Mode(i)^2)+Izz*(Phi_Mode(i)^2));
%KE Distribution for each direction
KE_X(i)=(Mass*(X_Mode(i)^2))/KE_Dom(i);
KE_Y(i)=(Mass*(Y_Mode(i)^2))/KE_Dom(i);
KE_Z(i)=(Mass*(Z_Mode(i)^2))/KE_Dom(i);
KE_Theta(i)=(Ixx*(Theta_Mode(i))^2)/KE_Dom(i);
KE_Rho(i)=(Iyy*(Rho_Mode(i))^2)/KE_Dom(i);
KE_Phi(i)=(Izz*(Phi_Mode(i))^2)/KE_Dom(i);
end
% Distribution as a percetange
KE_XF=KE_X*100;
KE_YF=KE_Y*100;
KE_ZF=KE_Z*100;
KE_ThetaF=KE_Theta*100;
KE_RhoF=KE_Rho*100;
KE_PhiF=KE_Phi*100;
%Kinetic Energy Distribution as a Matrix
KE_Distribution_Matrix=[KE_XF; KE_YF; KE_ZF; KE_ThetaF; KE_RhoF; KE_PhiF];
KE_Distribution_Matrix=KE_Distribution_Matrix';

採用された回答

Tom
Tom 2013 年 6 月 26 日
My guess is that these Ns should be Is:
X_Mode(i)=ModeShapes(n,1);
Y_Mode(i)=ModeShapes(n,2);
Z_Mode(i)=ModeShapes(n,3);
Theta_Mode(i)=ModeShapes(n,4);
Rho_Mode(i)=ModeShapes(n,5);
Phi_Mode(i)=ModeShapes(n,6);

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDescriptive Statistics についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by