Why is the convolution so different from the analytical answer?

5 ビュー (過去 30 日間)
Bradlee Harrison
Bradlee Harrison 2021 年 4 月 10 日
コメント済み: Bradlee Harrison 2021 年 4 月 10 日
I am trying to graph the convolution of two functions.
t = linspace(0,5,1001);
xt = (exp(-t) + exp(-3*t)).*heaviside(t);
ht = (1.5.*exp(-2.*t) + 1.5.*exp(-4.*t)).*heaviside(t);
yt_n = conv(xt,ht);
yt_a = (2.*exp(-1.*t)-2.*exp(-4.*t)).*heaviside(t)
When comparing yt_n and yt_a, the results are very different. Though, they should be the same since yt_a is just the analytically derived output response for x(t) and y(t), Why is this?

採用された回答

Paul
Paul 2021 年 4 月 10 日
編集済み: Paul 2021 年 4 月 10 日
When approximating the continuous convolution with a discrete convoluton, the discrete convolution needs to be multilplied by dt, which in this case is 0.005
plot(t,yt_a,t,yt_n(1:numel(t))*.005,'o'),grid

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLogical についてさらに検索

タグ

製品


リリース

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by