Evaluating polynomial functions to get integer as answer

1 回表示 (過去 30 日間)
Rodrigo Toledo
Rodrigo Toledo 2021 年 4 月 4 日
編集済み: Walter Roberson 2021 年 4 月 4 日
I am trying to evaluate:
syms x y
eq = (x^2 + y^3 == 31)
solve(eq)
eqs = [x^2 + y^3 == 31, x^2 == 31 - y^3]
S = solve(eq,[x y])
S.x and S.y still not 2 and 3
i am expecting to get as answer two integer: x=2 and y=3. How can i do it?
Thanks

採用された回答

Walter Roberson
Walter Roberson 2021 年 4 月 4 日
編集済み: Walter Roberson 2021 年 4 月 4 日
syms x y integer
eq = (x^2 + y^3 == 31)
eq = 
solx = solve(eq,x,'returnconditions',true)
solx = struct with fields:
x: [2×1 sym] parameters: [1×0 sym] conditions: [2×1 sym]
soly = solve(solx.conditions)
soly = 
3
X = subs(solx.x,y,soly)
X = 
Y = soly
Y = 
3
Caution: this kind of process will not generally attempt to find more than one solution for solx.conditions. But you could
soly = solve(eq,y,'returnconditions',true)
soly = struct with fields:
y: [3×1 sym] parameters: [1×0 sym] conditions: [3×1 sym]
solx = arrayfun(@solve, soly.conditions, 'uniform', 0)
Warning: Unable to find explicit solution. For options, see help.
solx = 3×1 cell array
{0×1 sym} {2×1 sym} {0×1 sym}
X = solx{2}
X = 
Y = subs(soly.y(2), x, X)
Y = 

その他の回答 (1 件)

darova
darova 2021 年 4 月 4 日
solve can be used for simple problems. Use fsolve or vpasolve to get numerical results
  1 件のコメント
Walter Roberson
Walter Roberson 2021 年 4 月 4 日
Not the point. The point is that solve() is having difficulty processing integer constraints in this case. fsolve and vpasolve have no chance of processing integer constraints.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by