Solving an equation with log

1 回表示 (過去 30 日間)
Rafi B
Rafi B 2021 年 3 月 20 日
コメント済み: Walter Roberson 2021 年 3 月 20 日
Hi i'm fairly new to MATLAB and encounter a problem regarding this equation y=c(x)^m
where m is the gradient of points:
(x,1y1)=(100,50)
(x2,y2)=(1000,10)
This is the eq i put on MATLAB:
Eq = log10(Y2) == log10(C1*X2^(m)); %Equation
C1 = vpasolve (Eq, C1)
It seems that i get C far from my hand-drawn answer
How to solve C?

採用された回答

Walter Roberson
Walter Roberson 2021 年 3 月 20 日
Looks okay to me.
format long g
X1 = 100; Y1 = 50;
X2 = 1000; Y2 = 10;
m = (Y2-Y1)./(X2-X1);
syms C1
Eq = log10(Y2) == log10(C1*X2^(m)); %Equation
C1sol = solve(Eq,C1)
C1sol = 
vpa(C1sol)
ans = 
13.593563908785257310765717430783
%log10(Y2) == log10(C1*X2^m) implies
%Y2 == C1*X2^m implies
C1_numeric = Y2/(X2^m)
C1_numeric =
13.5935639087853
  4 件のコメント
Rafi B
Rafi B 2021 年 3 月 20 日
quick question, on eqn3 wouldn't it just cross the c value off?
Walter Roberson
Walter Roberson 2021 年 3 月 20 日
Yes, giving you an equation of the form A=B^m with known A and B, which you can use to find m easily.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeAssumptions についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by