How do I solve a system of nonlinear differential equations like the one below?
6 ビュー (過去 30 日間)
古いコメントを表示
As seen below (ode1 ode2 ode3) are my equations and c_1 to c_9 are just some constants which will be later determined. Is there any way to solve this without numerical methods? Thank you!
syms x(t) y(t) z(t);
c_1 = 1
c_2 = 2
c_3 = 1
c_4 = 1
c_5 = 1
c_6 = 1
c_7 = 1
c_8 = 1
c_9 = 1
ode1 = diff(x,t) == c_1*(c_3-x) + c_2*(x-y);
ode2 = diff(y,t) == c_4*(x-y) - c_5*c_6*y*(1-z) + c_7*c_6*exp(c_8 - c_9*z);
ode3 = diff(z,t) == c_5*y*(1-z) - exp(c_8 - c_9*z);
odes = [ode1; ode2; ode3]
cond1 = y(0) == 0;
cond2 = x(0) == 0;
cond3 = z(0) == 0;
conds = [cond1 cond2 cond3];
0 件のコメント
採用された回答
Star Strider
2021 年 3 月 18 日
Add t and Y to the syms declaration, and add these to the end of the posted code:
[VF,Subs] = odeToVectorField(odes);
odefcn = matlabFunction(VF, 'Vars',{t,Y});
Then use ‘odefcn’ with the numerical ODE integrator of your choise (such as ode45) to integrate them numerically.
Use the ‘Subs’ variable to determine the variable assignment order in the function and in the outputs of the integration.
2 件のコメント
Star Strider
2021 年 5 月 2 日
As always, my pleasure!
Try this —
syms x(t) y(t) z(t) t Y
c_1 = 1
c_2 = 2
c_3 = 1
c_4 = 1
c_5 = 1
c_6 = 1
c_7 = 1
c_8 = 1
c_9 = 1
ode1 = diff(x,t) == c_1*(c_3-x) + c_2*(x-y);
ode2 = diff(y,t) == c_4*(x-y) - c_5*c_6*y*(1-z) + c_7*c_6*exp(c_8 - c_9*z);
ode3 = diff(z,t) == c_5*y*(1-z) - exp(c_8 - c_9*z);
odes = [ode1; ode2; ode3]
[VF,Subs] = odeToVectorField(odes)
odefcn = matlabFunction(VF, 'Vars',{t,Y});
[t,y] = ode45(odefcn, [0 50], zeros(1,3)+1E-8);
figure
plot(t, y)
grid
legend(string(Subs), 'Location','best')
ylim([-1 1]*5)
.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



