- Locate the Pivot: Before the if j~=k statement, you need to find the row index 'k' of the largest absolute value in the current column from row 'j' to 'n'.
- Implement Partial Pivoting: Use the pivot index k to swap rows in both 'U' and 'L' matrices if necessary.
Code for locating pivots in LU decomposition
9 ビュー (過去 30 日間)
古いコメントを表示
It is not possible to write a code to locate the pivot required for partial pivot in LU decomposition. Help me.
from for j=i:n-1 to if j~=k
function [L,U,P] = mylu(A)
[m,n] = size(A);
if m ~= n
fprintf('***입력된 행렬이 정사각행렬이 아님! ***\n');
L = []; U = []; P = []; return;
end
L=eye(n,n);
U=A;
p=1:n;
for j = i:n-1
if j~=k
U([j k],j:n)=U([k j],j:n);
L([j k],1:j-1)=L([k j],1:j-1);
p([j k]) = p([k j]);
end
for i=j+1:n
L(i,j) = U(i,j) / U(j,j);
U(i,j) = 0;
U(i,j+1:n) = U(i,j+1:n) - L(i,j)*U(j,j+1:n);
end
end
P=eye(n.n);
P = P(p,:);
0 件のコメント
回答 (1 件)
Shantanu Dixit
2024 年 8 月 27 日
Hi Ye,
The missing logic in your code is the part that identifies the pivot element needed for partial pivoting. Specifically, the steps to determine the pivot index 'k' are absent. Here's how you can implement it:
Below is the complete implementation for LUP decomposition:
function [L, U, P] = mylu(A)
[m, n] = size(A);
if m ~= n
fprintf('The input matrix is not square!');
L = []; U = []; P = []; return;
end
L = eye(n, n);
U = A;
p = 1:n;
for j = 1:n-1
% Locate the pivot
% find row index k with the largest absolute
% value in the jth column
[~, k] = max(abs(U(j:n, j)));
k = k + j - 1; % Adjust index
if j ~= k
U([j k], j:n) = U([k j], j:n);
L([j k], 1:j-1) = L([k j], 1:j-1);
p([j k]) = p([k j]);
end
for i = j+1:n
L(i, j) = U(i, j) / U(j, j);
U(i, j) = 0;
U(i, j+1:n) = U(i, j+1:n) - L(i, j) * U(j, j+1:n);
end
end
P = eye(n);
P = P(p, :);
end
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Linear Algebra についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!