How do I deal with different class sizes when classifying data with a petternnet?
1 回表示 (過去 30 日間)
古いコメントを表示
Anne Bernhart
2021 年 3 月 17 日
コメント済み: Anne Bernhart
2021 年 3 月 27 日
I want to classify datasets using a patternnet. I have 2 classes (labelled 1 and 2). However, class 2 is significantly smaller than class 1 (ratio 1:9). The patternnet always classifies every sample into class 1, reaching 90% accuracy with it.
Is there any way to weigh or prioritize my classes so that this is not viewed as the best solution? (e.g. a cost matrix like for a decision tree (fitctree))
4 件のコメント
MaHa
2021 年 3 月 17 日
I see I misunderstood sorry. What happens if you reduce the number of labbelled 1 to the number of labbelled 2 ? Does it still classes everything in L1 ?
採用された回答
Shravan Kumar Vankaramoni
2021 年 3 月 25 日
Hi Anne,
Have a look at the below thread. Hope that answers your question
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Classification Trees についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!