
Fitting a sum of exponentials to data (Least squares)
5 ビュー (過去 30 日間)
古いコメントを表示
How do I find
and
given
and
in the model

which describes the decay of two materials. Nis the total amount of material remaining after t hours, and
and
is the amount of material at
(B is just a background constant).
(B is just a background constant).I have solved it according to this paper, however my answer is not optimal compared to what the answer is supposed to be (according to an exercise sheet).
Below is what I did, note that
and
and the matrix a contains the parameters wanted.
and
and the matrix a contains the parameters wanted. Answer in the exercise sheet:
.
.x=[0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0];
y=[5995 4930 3485 2550 1910 1500 1085 935 830 655 585];
p=-0.5;
q=-0.2;
G=[length(x), sum(exp(p.*x)), sum(exp(q.*x));
sum(exp(p.*x)), sum(exp((2*p).*x)), sum(exp((p+q).*x));
sum(exp(q.*x)), sum(exp((p+q).*x)), sum(exp((2*p).*x))];
h=[sum(y);sum(y.*exp(p.*x));sum(y.*exp(q.*x))];
a=(G)\h;
0 件のコメント
回答 (1 件)
Alan Stevens
2021 年 3 月 16 日
Use Matlab's best-fit matrix approach as follows:
t=[0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0];
N=[5995 4930 3485 2550 1910 1500 1085 935 830 655 585];
p=-0.5;
q=-0.2;
E1 = exp(p*t);
E2 = exp(q*t);
% [E1 E1 1]*[N1; N2; B] = N
M = [E1' E2' ones(numel(t),1)];
% Least squares best-fit
NB = M\N';
N1 = NB(1);
N2 = NB(2);
B = NB(3);
tt = 0.5:0.1:10;
NN = N1*exp(p*tt) + N2*exp(q*tt) + B;
plot(t,N,'o',tt,NN), grid
xlabel('t'), ylabel('N')
legend('data','fit')
This results in

0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Curve Fitting Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!