In fourier series, why there should be finite maxima and minima (dirichlet conditions)
3 ビュー (過去 30 日間)
古いコメントを表示
why not infinte number of maxima and minima?
0 件のコメント
回答 (1 件)
Walter Roberson
2021 年 3 月 14 日
This is not a question about MATLAB. Please use more appropriate resources to investigate fourier theory.
Dirichlet conditions. The function f satisfies the Dirichlet conditions on the interval (–T/2, + T/2) if,(i)
f is bounded on the interval (–T/2, + T/2), and
(ii)
the interval (–T/2, + T/2) may be divided into a finite number of sub-intervals in each of which the derivative f′ exists throughout and does not change sign.
===
If you had an infinite number of maxima or minima then you would not be able to satisfy that there are a finite number of sub-intervals in each of which the derivative does not change sign. Each maxima or minima requires a sign change for the derivative.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Fourier Analysis and Filtering についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!