Can anyone help me solve this problem using Newton's Method?

1 回表示 (過去 30 日間)
Muzammil Arif
Muzammil Arif 2021 年 3 月 13 日
コメント済み: Sergey Kasyanov 2021 年 3 月 15 日
Using Newton's Method solve the equations:
x^3 + y^2 + x - 0.715 = 0
x^2 + y^3 - y - 0.523 = 0
with (x0, y0) = (1, 0).

回答 (1 件)

Sergey Kasyanov
Sergey Kasyanov 2021 年 3 月 13 日
Hello,
try that
i = 1;
V0 = [1;0];%[x0;y0]
V = V0 + 1;
while max(abs(V0 - V)) > 1e-10 && i < 1e2
V = V0;
J = [3*V(1)^2+1 2*V(2)
2*V(1) 3*V(2)^2-1];
F = [V(1)^3+V(2)^2+V(1)-0.715
V(1)^2+V(2)^3-V(2)-0.523];
V0 = V - F./(J*V);
i = i + 1;
end
x = V(1);
y = V(2);
  3 件のコメント
Muzammil Arif
Muzammil Arif 2021 年 3 月 14 日
0.5 and - 0.3 are the answer by solving
Sergey Kasyanov
Sergey Kasyanov 2021 年 3 月 15 日
There are some solutions of the equations system. You can try to find another solutions by changing start point or by adding and varying coefficient k in equation (0<k<1):
V0 = V - k * F./(J*V);
There are three solution near the 0: [-0.46, 1.13], [0.38;-0.54], [0.5;-0.3].

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSystems of Nonlinear Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by