Matlab Numerical integral issue

17 ビュー (過去 30 日間)
fatemeh kamali
fatemeh kamali 2021 年 3 月 12 日
コメント済み: Alan Stevens 2021 年 3 月 15 日
Hi everyone.
I'm trying to solve the integral in the code below:
clc
clear all
%Enviroment Properties
f=15e9;
c=2.99792458e8;
lambda=c/f;
mu0=4*pi*1e-7;
eps0=1.0/c^2/mu0;
eta0=sqrt(mu0/eps0);
epsr=5;
omega=2*pi*f;
k0=omega*sqrt(mu0*eps0);
k2=omega*sqrt(mu0*eps0*epsr);
%square patch array properties
l=1.8e-3;
alpha_Ett=1.02*(l^3);
p=2e-3;
N=1/(p^2);
r=0.6956*p;
chieexx=(N*alpha_Ett)/(1-(N*alpha_Ett/(4*r)));
%source and observation points
z0=3e-3;
z=2e-3;
y=0;
for x=5e-6:1e-5:5e-3
pho=sqrt(x.^2+y.^2);
f1 = (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* (((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2))*(k2^2).*chieexx)+ ((k0^2)*(-2i+(sqrt(k0^2-kp.^2)).*chieexx)))))./((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2)).*(k2^2).*chieexx)+ ((k0^2).*(2i+(sqrt(k0^2-kp.^2)).*chieexx)))))) .* exp(1i.*(sqrt(k0^2-kp.^2)).*(z+z0)) );
f2= (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* exp(1i.*(sqrt(k0^2-kp.^2)).*(-z+z0)) );
I1= quadgk(f1,0,inf,'RelTol',1e-8);
I2= quadgk(f2,0,inf,'RelTol',1e-8);
E= (eta0/(4*pi*k0)).*(abs(I1+I2));
semilogy(x,abs(E),'Or')
hold on
end
set(gca,'FontSize',14,'LineWidth',3)
xlabel('x [m]');ylabel('|Ez| [V/m]')
But i get the following warning :
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.2e+03.
The integral may not exist, or it may be difficult to approximate numerically. Increase MaxIntervalCount to
1132 to enable QUADGK to continue for another iteration.
Could you please help me to improve my code.
Thanks in advance

回答 (1 件)

Alan Stevens
Alan Stevens 2021 年 3 月 13 日
編集済み: Alan Stevens 2021 年 3 月 13 日
Your problem occurs when the upper limit of the integration exceeds k0. Are you sure the functions are defined correctly for that situation?
If the upper limit is taken as k0, the following code
%Enviroment Properties
f=15e9;
c=2.99792458e8;
lambda=c/f;
mu0=4*pi*1e-7;
eps0=1.0/c^2/mu0;
eta0=sqrt(mu0/eps0);
epsr=5;
omega=2*pi*f;
k0=omega*sqrt(mu0*eps0);
k2=omega*sqrt(mu0*eps0*epsr);
%square patch array properties
l=1.8e-3;
alpha_Ett=1.02*(l^3);
p=2e-3;
N=1/(p^2);
r=0.6956*p;
chieexx=(N*alpha_Ett)/(1-(N*alpha_Ett/(4*r)));
%source and observation points
z0=3e-3;
z=2e-3;
y=0;
%x = 5e-6:1e-4:5e-3;
x = logspace(-5.301,-2.301);
lo = 0; hi = k0; % Integration limits
for i = 1:numel(x)
pho=sqrt(x(i).^2+y.^2);
f1 = (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* (((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2))*(k2^2).*chieexx)+ ((k0^2)*(-2i+(sqrt(k0^2-kp.^2)).*chieexx)))))./((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2)).*(k2^2).*chieexx)+ ((k0^2).*(2i+(sqrt(k0^2-kp.^2)).*chieexx)))))) .* exp(1i.*(sqrt(k0^2-kp.^2)).*(z+z0)) );
f2= (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* exp(1i.*(sqrt(k0^2-kp.^2)).*(-z+z0)) );
I1= quadgk(f1,lo,hi);
I2= quadgk(f2,lo,hi);
E(i)= (eta0/(4*pi*k0)).*(abs(I1+I2));
hold on
end
semilogy(x,abs(E),'Or')
set(gca,'FontSize',14,'LineWidth',3)
xlabel('x [m]');ylabel('|Ez| [V/m]')
produces this result
  2 件のコメント
fatemeh kamali
fatemeh kamali 2021 年 3 月 15 日
Thanks for your answer Alan Stevens! Yes i am sure about the definition of the functions.
Alan Stevens
Alan Stevens 2021 年 3 月 15 日
Then it looks like the only sensible numerical upper limit for your integrals is k0.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by