Surface fitting with multiple 2d gaussian functions

10 ビュー (過去 30 日間)
Tobias Schmid
Tobias Schmid 2021 年 2 月 26 日
編集済み: Tobias Schmid 2021 年 2 月 26 日
Consider the functions:
f1=A1.*exp(-((x-x01).^2./(2.*sigmax1^2)+(y-y01).^2./(2.*sigmay1^2)))
f2=A2.*exp(-((x-x02).^2./(2.*sigmax2^2)+(y-y02).^2./(2.*sigmay2^2)))
f3=A3.*exp(-((x-x03).^2./(2.*sigmax3^2)+(y-y03).^2./(2.*sigmay3^2)))
with respective volumes given by
V1=2*pi*A1*sigmax1*sigmay1
V2=2*pi*A2*sigmax2*sigmay2
V3=2*pi*A3*sigmax3*sigmay3
Problem Statement:
Known:
  1. Sum of f1+f2+f3 is known across domain [x,y]=meshgrid();
  2. Ok to assume that f1+f2+f3=0 at the domain boundary
  3. The volumes for V1, V2, V3 are known
Objective:
Find parameters A1,x01,y01,sigmax1,sigmay1,A2,x02,y02,sigmax2,sigmay2,A3,x03,y03,sigmax3,sigmay3
Any suggestion on how to solve such a problem would be highly appreciated.

回答 (0 件)

カテゴリ

Help Center および File ExchangeSmoothing についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by