- the ODE is stiff and you use a non-stiff solver,
- the solution is not stable - then tiny deviations caused by the different integration schemes are amplified.
Error using ODE solvers?
15 ビュー (過去 30 日間)
古いコメントを表示
Hi I'm trying to solve for this system of ODEs using the ODE solver that works the fastest:
d/dt[x1 x2 x3] = [-10^4*x1+x2^2+x3;0.1*x2+x3;x1^3-x2-10^-4*x3]
So in order to determine which ODE solver computes this the fastest, I've simply tested each solver with the same conditions and tolerance. However, the x1 values I get are extremely off from each other from each solver even though x2 and x3 are relatively close in terms of the tolerance. I don't know what seems to be the problem...
0 件のコメント
採用された回答
Jan
2013 年 5 月 6 日
編集済み: Jan
2013 年 5 月 6 日
The resulting trajectories will differ, when:
So at first determine the stiffness, then calculate the sensitivity matrix by varying the inputs and comparing the outputs.
Btw, if speed matters, -1e4 is faster than -10^4.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!