K-means Clustering Result Always Changes

26 ビュー (過去 30 日間)
Alvi Syahrin
Alvi Syahrin 2013 年 5 月 4 日
コメント済み: Walter Roberson 2021 年 11 月 26 日
I'm working on k-means in MATLAB. Here are my codes:
load cobat.txt
k=input('Enter the number of cluster: ');
if k<8
[cidx ctrs]=kmeans(cobat, k, 'dist', 'sqEuclidean');
Z = [cobat cidx]
else
h=msgbox('Must be less than eight');
end
"cobat" is the file of mine and here it looks:
65 80 55
45 75 78
36 67 66
65 78 88
79 80 72
77 85 65
76 77 79
65 67 88
85 76 88
56 76 65
My problem is everytime I run the code, it always shows different result, different cluster. How can I keep the clustering result always the same?

採用された回答

Walter Roberson
Walter Roberson 2013 年 5 月 5 日
%generate some initial cluster centers according to some deterministic algorithm
%in this case, I construct a space-diagonal equally spaced, but choose your
%own algorithm
minc = min(cobat, 1);
maxc = max(cobat, 1);
nsamp = size(cobat,1);
initialcenters = repmat(minc, nsamp, 1) + bsxfun(@times, (0:nsamp-1).', (maxc - minc) ./ (nsamp-1));
%Once you have constructed the initial centers, cluster using those centers
[cidx ctrs] = kmeans(cobat, k, 'dist', 'sqEuclidean', 'start', initialcenters);
  6 件のコメント
esmat abdallah
esmat abdallah 2021 年 11 月 26 日
initialcenters = repmat(minc, nsamp, 1) + bsxfun(@times, (0:nsamp-1).', (maxc - minc) ./ (nsamp-1));
please, matlab out an error on this line : "Error using +
Matrix dimensions must agree."
what can i do ??
Walter Roberson
Walter Roberson 2021 年 11 月 26 日
%generate some initial cluster centers according to some deterministic algorithm
%in this case, I construct a space-diagonal equally spaced, but choose your
%own algorithm
minc = min(cobat, [], 1);
maxc = max(cobat, [], 1);
nsamp = size(cobat,1);
initialcenters = repmat(minc, nsamp, 1) + bsxfun(@times, (0:nsamp-1).', (maxc - minc) ./ (nsamp-1));
%Once you have constructed the initial centers, cluster using those centers
[cidx ctrs] = kmeans(cobat, k, 'dist', 'sqEuclidean', 'start', initialcenters);

サインインしてコメントする。

その他の回答 (2 件)

the cyclist
the cyclist 2013 年 5 月 4 日
K-means clustering uses randomness as part of the algorithm Try setting the seed of the random number generator before you start. If you have a relatively new version of MATLAB, you can do this with the rng() command. Put
rng(1)
at the beginning of your code.
  2 件のコメント
Alvi Syahrin
Alvi Syahrin 2013 年 5 月 4 日
Thank you for the answer. I have MATLAB 7.11.0(R2010b), and when I tried that command, it's not working, getting an error for undefined function. Do you have any idea to solve this?
the cyclist
the cyclist 2013 年 5 月 4 日
Type
>> doc randstream
to see how to do it in your version.

サインインしてコメントする。


Pallavi Saha
Pallavi Saha 2017 年 9 月 14 日
I am facing the same issue inconsistency in the output of fcm. Can anyone help me
  3 件のコメント
Mehmet Volkan Ozdogan
Mehmet Volkan Ozdogan 2019 年 3 月 28 日
Hi,
I have a question about rng(). If we use rng() command, K-means algortihm stil repeats until the results are getting convergenced to the best. Is that right?
Thank you
Walter Roberson
Walter Roberson 2019 年 3 月 29 日
Yes.
rng(SomeParticularNumericSeed)
just ensures that it will always use the same random number sequence provided that no other random numbers are asked for between the rng() call and the kmeans call.

サインインしてコメントする。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by