Error using pcolor function

2 ビュー (過去 30 日間)
Burak
Burak 2013 年 5 月 3 日
Hi , I want to plot my f_E function according to thetas and rs.But pcolor doesnt work.I got ??? Error using ==> pcolor at 55 Color data input must be a matrix.
If anyone helps me , I apreciate it.Thx for your concern.
if true
clear all
format long
tic
N_cut=19;
eps0=(10^-9)/(36*pi);
mu0=4*pi*10^-7;
epsr1=56.8;
epsr2=20.9;
epsr3=41.41;
mur1=1.;
mur2=1.;
mur3=1.;
eps1=epsr1*eps0;
eps2=epsr2*eps0;
eps3=epsr3*eps0;
mu1=mur1*mu0;
mu2=mur2*mu0;
mu3=mur3*mu0;
freq=9*10^6;
omeg=2*pi*freq;
sigma1=1.10;
sigma2=0.34;
sigma3=0.87;
k1=sqrt(omeg*omeg*eps1*mu1-1i*omeg*sigma1*mu1);
k2=sqrt(omeg*omeg*eps2*mu2-1i*omeg*sigma2*mu2);
k3=sqrt(omeg*omeg*eps3*mu3-1i*omeg*sigma3*mu3);
k0=omeg*sqrt(eps0*mu0);
phi=pi/2;
R_1=0.09;
R_2=0.1;
R_3=0.15;
X=mu0/mu2;
Y=mu1/mu2;
Z=mu0/mu3;
T=mu2/mu3;
X1=k0/k2;
Y1=k1/k2;
Z1=k0/k3;
T1=k2/k3;
for n=1:N_cut
A(n)=sqrt(pi.*k0.*(R_3)/2).*besselj(n+0.5,k0.*(R_3));
B(n)=-sqrt(pi*k0*(R_3)/2)*besselj(n+1.5,k0*(R_3))+(n+1).*sqrt(pi/(2*k0*(R_3)))*besselj(n+0.5,k0*(R_3));
C(n)=sqrt(pi.*k0.*(R_3)/2).*besselh(n+0.5,2,k0.*(R_3));
D(n)=-sqrt(pi*k0*(R_3)/2)*besselh(n+1.5,2,k0*(R_3))+(n+1).*sqrt(pi/(2*k0*(R_3)))*besselh(n+0.5,2,k0*(R_3));
E(n)=sqrt(pi.*k3.*(R_3)/2).*besselh(n+0.5,1,k3.*(R_3));
F(n)=-sqrt(pi*k3*(R_3)/2)*besselh(n+1.5,1,k3*(R_3))+(n+1).*sqrt(pi/(2*k3*(R_3)))*besselh(n+0.5,1,k3*(R_3));
G(n)=sqrt(pi.*k3.*(R_3)/2).*besselh(n+0.5,2,k3.*(R_3));
H(n)=-sqrt(pi*k3*(R_3)/2).*besselh(n+1.5,2,k3*(R_3))+(n+1).*sqrt(pi/(2*k3*(R_3)))*besselh(n+0.5,2,k3*(R_3));
I(n)=(sqrt(pi*k3*((R_2)/2)).*besselh(n+0.5,1,k3.*(R_2)));
J(n)=-sqrt(pi.*k3.*((R_2)/2)).*besselh(n+1.5,1,k3.*(R_2))+(n+1).*sqrt(pi./(2.*k3.*(R_2))).*besselh(n+0.5,1,k3.*(R_2));
K(n)=sqrt(pi.*k3.*(R_2)/2).*besselh(n+0.5,2,k3.*(R_2));
L(n)=-sqrt(pi*k3*(R_2)/2)*besselh(n+1.5,2,k3*(R_2))+(n+1).*sqrt(pi/(2*k3*(R_2)))*besselh(n+0.5,2,k3*(R_2));
M(n)=sqrt(pi.*k2.*(R_2)/2).*besselh(n+0.5,1,k2.*(R_2));
N(n)=-sqrt(pi*k2*(R_2)/2)*besselh(n+1.5,1,k2*(R_2))+(n+1).*sqrt(pi/(2*k2*(R_2)))*besselh(n+0.5,1,k2*(R_2));
O(n)=sqrt(pi.*k2.*(R_2)/2).*besselh(n+0.5,2,k2.*(R_2));
P(n)=-sqrt(pi*k2*(R_2)/2)*besselh(n+1.5,2,k2*(R_2))+(n+1).*sqrt(pi/(2*k2*(R_2)))*besselh(n+0.5,2,k2*(R_2));
A1(n)=sqrt(pi.*k1.*(R_1)/2).*besselh(n+0.5,1,k1.*(R_1));
B1(n)=-sqrt(pi*k1*(R_1)/2)*besselh(n+1.5,1,k1*(R_1))+(n+1).*sqrt(pi/(2*k1*(R_1)))*besselh(n+0.5,1,k1*(R_1));
C1(n)=sqrt(pi.*k1.*(R_1)/2).*besselh(n+0.5,1,k1.*(R_1));
D1(n)=-sqrt(pi*k1*(R_1)/2)*besselh(n+1.5,2,k1*(R_1))+(n+1).*sqrt(pi/(2*k1*(R_1)))*besselh(n+0.5,2,k1*(R_1));
E1(n)=sqrt(pi.*k2.*(R_1)/2).*besselh(n+0.5,1,k2.*(R_1));
F1(n)=-sqrt(pi*k2*(R_1)/2)*besselh(n+1.5,1,k2*(R_1))+(n+1).*sqrt(pi/(2*k2*(R_1)))*besselh(n+0.5,1,k2*(R_1));
G1(n)=sqrt(pi.*k2.*(R_1)/2).*besselh(n+0.5,2,k2.*(R_1));
H1(n)=-sqrt(pi*k2*(R_1)/2)*besselh(n+1.5,2,k2*(R_1))+(n+1).*sqrt(pi/(2*k2*(R_1)))*besselh(n+0.5,2,k2*(R_1));
S(n)=(((1i)^(-n))*(2*n+1))/(n*(n+1));
R1_H(n)=sqrt((mu2*eps1)/(eps2*mu1))*((A1(n)+C1(n))/(B1(n)+D1(n)));
R1_E(n)=sqrt((mu1*eps2)/(eps1*mu2))*((A1(n)+C1(n))/(B1(n)+D1(n)));
Q(n)=-((E1(n)-R1_H(n)*F1(n))/(G1(n)-R1_H(n)*H1(n)));
R(n)=-((E1(n)-R1_E(n)*F1(n))/(G1(n)-R1_E(n)*H1(n)));
R2_H(n)=sqrt((mu3*eps2)/(eps3*mu2))*((M(n)+Q(n)*O(n))/(N(n)+Q(n)*P(n)));
R2_E(n)=sqrt((mu2*eps3)/(eps2*mu3))*((M(n)+R(n)*O(n))/(N(n)+R(n)*P(n)));
Q2(n)=-((I(n)-R2_H(n)*J(n))/(K(n)-R2_H(n)*L(n)));
R2(n)=-((I(n)-R2_E(n)*J(n))/(K(n)-R2_E(n)*L(n)));
R3_H(n)=sqrt((mu0*eps3)/(eps0*mu3))*((E(n)+Q2(n)*G(n))/(F(n)+Q2(n)*H(n)));
R3_E(n)=sqrt((mu3*eps0)/(eps3*mu0))*((E(n)+R2(n)*G(n))/(F(n)+R2(n)*H(n)));
a(n)=-S(n)*((A(n)-R3_H(n)*B(n))/(C(n)-R3_H(n)*D(n)));
b(n)=-S(n)*((A(n)-R3_E(n)*B(n))/(C(n)-R3_E(n)*D(n)));
c3(n)=((S(n)*(A(n)*Z1*H(n)-B(n)*Z*G(n))+a(n)*(Z1*C(n)*H(n)-Z*D(n)*G(n)))/(Z*Z1*(E(n)*H(n)-F(n)*G(n))));
d3(n)=(S(n)*A(n)+a(n)*C(n)-Z*E(n)*c3(n))/(Z*G(n));
c3_prime(n)=((S(n)*(A(n)*Z*H(n)-B(n)*Z1*G(n))+b(n)*(Z*C(n)*H(n)-Z1*D(n)*G(n)))/(Z*Z1*(E(n)*H(n)-F(n)*G(n))));
d3_prime(n)=(S(n)*A(n)+b(n)*C(n)-Z1*E(n)*c3_prime(n))/(Z1*G(n));
c2(n)=(c3(n)*(T*I(n)*P(n)-T1*J(n)*O(n))+d3(n)*(T*K(n)*P(n)-T1*L(n)*O(n)))/(M(n)*P(n)-N(n)*O(n));
d2(n)=(T*I(n)*c3(n)+T*K(n)*d3(n)-c2(n)*M(n))/O(n);
c2_prime(n)=(c3_prime(n)*(T1*I(n)*P(n)-T*J(n)*O(n))+d3_prime(n)*(T1*K(n)*P(n)-T*L(n)*O(n)))/(M(n)*P(n)-N(n)*O(n));
d2_prime(n)=(T1*I(n)*c3_prime(n)+T1*K(n)*d3_prime(n)-c2_prime(n)*M(n))/O(n);
c1(n)=(Y*E1(n)*c2(n)+Y*G1(n)*d2(n))/(A1(n)+C1(n));
d1(n)=(Y*E1(n)*c2(n)+Y*G1(n)*d2(n))/(A1(n)+C1(n));
c1_prime(n)=(Y1*E1(n)*c2_prime(n)+Y1*G1(n)*d2_prime(n))/(A1(n)+C1(n));
d1_prime(n)=(Y1*E1(n)*c2_prime(n)+Y1*G1(n)*d2_prime(n))/(A1(n)+C1(n));
end
ygbegin=-0.15;
ygend=0.15;
zgbegin=-0.15;
zgend=0.15;
M_d=21;
deltayg=(ygend-ygbegin)/M_d;
deltazg=(zgend-zgbegin)/M_d;
xg=0;
yg=ygbegin:deltayg:ygend;
zg=zgbegin:deltazg:zgend;
for mg=1:M_d+1,
rg(mg)=sqrt(xg^2+yg(mg)^2+zg(mg)^2);
thetag(mg)=atan(sqrt(xg^2+yg(mg)^2)/zg(mg));
end
for mg=1:M_d+1
for n=1:N_cut
L1=legendre(n,cos(thetag(mg)));
L11=legendre(n-1,cos(thetag(mg)));
L2(n,mg)=L1(2,:);
if n==1
L3(n,mg)=0.;
else
L3(n,mg)=L11(2,:);
end
L2_der(n,mg)= (1/(sin(thetag(mg)).^2))*((-n)*cos(thetag(mg)*pi/180)*L2(n,mg)+(n+1)*L3(n,mg));
V(n,mg)=L2(n,mg)/(sin(thetag(mg)));
W(n,mg)=-(L2_der(n,mg)*sin(thetag(mg)));
hank1_kur1(n)=sqrt(pi.*k1.*(rg(mg))/2).*besselh(n+0.5,1,k1.*(rg(mg)));
hank2_kur1(n)=sqrt(pi.*k1.*(rg(mg))/2).*besselh(n+0.5,2,k1.*(rg(mg)));
hank1_kur1_der(n)=-sqrt(pi*k1*(rg(mg))/2)*besselh(n+1.5,1,k1*(rg(mg)))+(n+1).*sqrt(pi/(2*k1*(rg(mg))))*besselh(n+0.5,1,k1*(rg(mg)));
hank2_kur1_der(n)=-sqrt(pi*k1*(rg(mg))/2)*besselh(n+1.5,2,k1*(rg(mg)))+(n+1).*sqrt(pi/(2*k1*(rg(mg))))*besselh(n+0.5,2,k1*(rg(mg)));
hank1_kur2(n)=sqrt(pi.*k2.*(rg(mg))/2).*besselh(n+0.5,1,k2.*(rg(mg)));
hank2_kur2(n)=sqrt(pi.*k2.*(rg(mg))/2).*besselh(n+0.5,2,k2.*(rg(mg)));
hank1_kur2_der(n)=-sqrt(pi*k2*(rg(mg))/2)*besselh(n+1.5,1,k2*(rg(mg)))+(n+1).*sqrt(pi/(2*k2*(rg(mg))))*besselh(n+0.5,1,k2*(rg(mg)));
hank2_kur2_der(n)=-sqrt(pi*k2*(rg(mg))/2)*besselh(n+1.5,2,k2*(rg(mg)))+(n+1).*sqrt(pi/(2*k2*(rg(mg))))*besselh(n+0.5,2,k2*(rg(mg)));
hank1_kur3(n)=sqrt(pi.*k3.*(rg(mg))/2).*besselh(n+0.5,1,k3.*(rg(mg)));
hank2_kur3(n)=sqrt(pi.*k3.*(rg(mg))/2).*besselh(n+0.5,2,k3.*(rg(mg)));
hank1_kur3_der(n)=-sqrt(pi*k3*(rg(mg))/2)*besselh(n+1.5,1,k3*(rg(mg)))+(n+1).*sqrt(pi/(2*k3*(rg(mg))))*besselh(n+0.5,1,k3*(rg(mg)));
hank2_kur3_der(n)=-sqrt(pi*k3*(rg(mg))/2)*besselh(n+1.5,2,k3*(rg(mg)))+(n+1).*sqrt(pi/(2*k3*(rg(mg))))*besselh(n+0.5,2,k3*(rg(mg)));
bessel_out(n)=sqrt(pi.*k0.*(rg(mg))/2).*besselj(n+0.5,k0.*(rg(mg)));
hankel_out(n)=sqrt(pi.*k0.*(rg(mg))/2).*besselh(n+0.5,2,k0.*(rg(mg)));
bessel_out_der(n)=-sqrt(pi*k0*(rg(mg))/2)*besselj(n+1.5,k0*(rg(mg)))+(n+1).*sqrt(pi/(2*k0*(rg(mg))))*besselj(n+0.5,k0*(rg(mg)));
hankel_out_der(n)=-sqrt(pi*k0*(rg(mg))/2)*besselh(n+1.5,2,k0*(rg(mg)))+(n+1).*sqrt(pi/(2*k0*(rg(mg))))*besselh(n+0.5,2,k0*(rg(mg)));
if rg(mg)<=R_1
E(mg,n)=(sin(phi)/(k1*rg(mg)))*(((1i)*(c1(n)*hank1_kur1_der(n)+d1(n)*hank2_kur1_der(n))*V(n,mg))+((c1_prime(n)*hank1_kur1(n)+d1_prime(n)*hank2_kur1(n))*W(n,mg)));
else if R_1<rg(mg)<=R_2
E(mg,n)=(sin(phi)/(k2*rg(mg)))*(((1i)*(c2(n)*hank1_kur2_der(n)+d2(n)*hank2_kur2_der(n))*V(n,mg))+((c2_prime(n)*hank1_kur2(n)+d1_prime(n)*hank2_kur2(n))*W(n,mg)));
else if R_2<rg(mg)<=R_3
E(mg,n)=(sin(phi)/(k3*rg(mg)))*(((1i)*(c3(n)*hank1_kur3_der(n)+d3(n)*hank2_kur3_der(n))*V(n,mg))+((c3_prime(n)*hank1_kur3(n)+d3_prime(n)*hank2_kur3(n))*W(n,mg)));
else
E(mg,n)=(-sin(phi)/(k0*rg(mg)))*(((S(n)*bessel_out(n)+b(n)*hankel_out(n))*(-W(n,mg)))-((1i)*((S(n)*bessel_out_der(n)+a(n)*hankel_out_der(n))*...
V(n,mg))));
end
end
end
end
end
f_E=sum(E(mg,n),2);
figure
pcolor(abs(E(mg,n)))
hold
end

採用された回答

Walter Roberson
Walter Roberson 2013 年 5 月 3 日
Your line
pcolor(abs(E(mg,n)))
is after your nested "for" loops, so mg and n will each have their final values from the loop, the scalars M_d+1 and N_cut respectively. So E(mg,n) is a scalar, and abs(E(mg,n)) remains a scalar. You are trying to pcolor() a scalar value, which is not allowed.
You probably want
pcolar(abs(E))
  1 件のコメント
Burak
Burak 2013 年 5 月 3 日
thanks for your concern , it helped a lot.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeAnnotations についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by