custom regression deep learning

9 ビュー (過去 30 日間)
jaehong kim
jaehong kim 2021 年 2 月 10 日
コメント済み: jaehong kim 2021 年 2 月 16 日
Hi~
I ran into an error while doing custom regression.
In short, it is a neural network that receives 8 features as input and outputs 1 output.
My code and error are as follows.
clear,clc,close all
data=readmatrix('train.csv');
inputs=data(:,1:8);
targets=data(:,9);
input2=transpose(inputs);
target2=transpose(targets);
inputs2=normalize(input2,2,'range');
layer = mseRegressionLayer('mse');
layers = [
featureInputLayer(8,'Name','in')
fullyConnectedLayer(1,'Name','fc2')
];
lgraph=layerGraph(layers);
dlnet=dlnetwork(lgraph);
iteration = 1;
averageGrad = [];
averageSqGrad = [];
learnRate = 0.005;
gradDecay = 0.75;
sqGradDecay = 0.95;
dlX=dlarray(inputs2);
for it=1:5000
iteration = iteration + 1;
[gradient,loss]=dlfeval(@modelGradients,dlnet,dlX,target2);
[dlX,averageGrad,averageSqGrad] = adamupdate(dlX,gradient,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);
if it>=4500 & mod(it,10)==0
disp(it);
end
end
function [gradient,loss]=modelGradients(dlnet,dlx,t)
out=forward(dlnet,dlx);
gradient=dlgradient(loss,dlx);
loss=mean((out-t).^2);
end
Error using dlfeval (line 43)
First input argument must be a formatted dlarray.
Error in untitled3 (line 31)
[gradient,loss]=dlfeval(@modelGradients,dlnet,dlX,target2);
Thank you for reading my question, and I hope someone who has insight will write an answer.

採用された回答

Iuliu Ardelean
Iuliu Ardelean 2021 年 2 月 10 日
Hey, when you call dlX=dlarray(inputs2), you should specify which dimensions are Spatial/Batch/Channel etc.
e.g.
X = randn(3,5);
dlX = dlarray(X,'SC')
SC are space and channel in this case.
Read more here:
  6 件のコメント
Iuliu Ardelean
Iuliu Ardelean 2021 年 2 月 15 日
Hey I've read the question and am not sure why this happens. I will try finding what is wrong tomorrow
jaehong kim
jaehong kim 2021 年 2 月 16 日
yes!
Thank you all the time for your hard work.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by