how to produce a 2-D point distribution with normal density distribution
1 回表示 (過去 30 日間)
古いコメントを表示
Hi: I am trying to simulate a galaxy distribution, in which all units are identical, but the local densities are different. Simply speaking, I need to produce a 2-D point distribution, say, 1000 identical points in a 10*10 square, then if I measure the local densities (for example, within a circle with radius=1), I could get a normal distribution of densities.
Maybe I did not explain it clearly, but just do not know how to do it, I can easily generate a data set with normal distribution value, but how to apply normal distribution on the position of 2-D points (move some together and take some apart) to get normal density distribution? thanks!
2 件のコメント
Iman Ansari
2013 年 4 月 30 日
編集済み: Iman Ansari
2013 年 4 月 30 日
See this: (mean zero and variance 1)
A=randn(1000,2);
x=A(:,1);
y=A(:,2);
plot(x,y,'Marker','.','LineStyle','none')
var(x)+1i*var(y)
mean(x)+1i*mean(y)
回答 (3 件)
Iman Ansari
2013 年 5 月 1 日
With adding a number in x and y directions you can change their position, and the number multiplied changes their radius:
A=randn(3000,2);
x=A(:,1)';
y=A(:,2)';
x=[x(1:800)+3 1/2.*x(801:1800)-3 1.5.*x(1801:3000)+2];
y=[y(1:800)+4 1/2.*y(801:1800) 1.5.*y(1801:3000)-3];
plot(x,y,'Marker','.','LineStyle','none')
axis('equal')
var(x)+1i*var(y)
mean(x)+1i*mean(y)
1 件のコメント
Random user
2017 年 3 月 28 日
Could you explain the code please? For example, if I want to make it more efficient, how would this be done in a loop? For example,
x=[x(1:800)+i-iterator 1/2.*x(801:1800)+i-iterator 1.5.*x(1801:3000)+i-iterator.....];
y=[y(1:800)+constant 1/2.*y(801:1800)+constant 1.5.*y(1801:3000)+constant.....];
If I wanted to use a loop, or any other vectorization method, how would this be done?
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!