Symbolic Math shows weird behavior - not seen in Wolfram or Octave

2 ビュー (過去 30 日間)
Stiv Nikolov
Stiv Nikolov 2021 年 2 月 5 日
コメント済み: Stiv Nikolov 2021 年 2 月 5 日
Hello everyone!
I was trying to calculate a real eigenvector of a matrix containing trigonometric functions. The only real eigenvalue is 0. Here is my solution by hand using a vector product for :
The cancels out with the cosine into .
For the code I replaced the function with so terms could cancel out as by hand, since they did not with .
Here is the code:
%pkg load symbolic % only for octave
syms x
A = sym([1 -2*cos(x) 0; -sin(x)/cos(x)*sin(x) 1 cos(x); 1 -2*sin(x)/cos(x)*sin(x) 2])
[V,D] = eig(A)
V(:,1)*(1-2*sin(x)^2)
Output of Octave 6.1.0 (with SymPy 1.5.1 managing symbolic math):
Output of Matlab R2020b:
What am I missing / doing wrong?

採用された回答

Paul
Paul 2021 年 2 月 5 日
編集済み: Paul 2021 年 2 月 5 日
It looks like the expected solution can be obtained with some work. Maybe someone else can get there faster.
>> syms x real
>> A = sym([1 -2*cos(x) 0; -sin(x)/cos(x)*sin(x) 1 cos(x); 1 -2*sin(x)/cos(x)*sin(x) 2])
A =
[ 1, -2*cos(x), 0]
[ -sin(x)^2/cos(x), 1, cos(x)]
[ 1, -(2*sin(x)^2)/cos(x), 2]
>> [V,D]=eig(A)
V =
[ ((cos(x)^4 + 3*cos(x)^2*sin(x)^2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3))/(cos(x)^4 - 2*sin(x)^6) - (2*(cos(x)^4 + cos(x)^2*sin(x)^4 + cos(x)^2*sin(x)^2))/(cos(x)^4 - 2*sin(x)^6) - (cos(x)^2*sin(x)^2*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3)^2)/(cos(x)^4 - 2*sin(x)^6), - (2*(cos(x)^4 + cos(x)^2*sin(x)^4 + cos(x)^2*sin(x)^2))/(cos(x)^4 - 2*sin(x)^6) - ((cos(x)^4 + 3*cos(x)^2*sin(x)^2)*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3))/(cos(x)^4 - 2*sin(x)^6) - (cos(x)^2*sin(x)^2*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3)^2)/(cos(x)^4 - 2*sin(x)^6), - (2*(cos(x)^4 + cos(x)^2*sin(x)^4 + cos(x)^2*sin(x)^2))/(cos(x)^4 - 2*sin(x)^6) - ((cos(x)^4 + 3*cos(x)^2*sin(x)^2)*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3))/(cos(x)^4 - 2*sin(x)^6) - (cos(x)^2*sin(x)^2*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3)^2)/(cos(x)^4 - 2*sin(x)^6)]
[ ((3*cos(x)^3 + 2*cos(x)*sin(x)^4)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3))/(2*(cos(x)^4 - 2*sin(x)^6)) - (cos(x)^3 + 2*cos(x)*sin(x)^4 + cos(x)^3*sin(x)^2)/(cos(x)^4 - 2*sin(x)^6) - (cos(x)^3*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3)^2)/(2*(cos(x)^4 - 2*sin(x)^6)), - (cos(x)^3 + 2*cos(x)*sin(x)^4 + cos(x)^3*sin(x)^2)/(cos(x)^4 - 2*sin(x)^6) - ((3*cos(x)^3 + 2*cos(x)*sin(x)^4)*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3))/(2*(cos(x)^4 - 2*sin(x)^6)) - (cos(x)^3*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3)^2)/(2*(cos(x)^4 - 2*sin(x)^6)), - (cos(x)^3 + 2*cos(x)*sin(x)^4 + cos(x)^3*sin(x)^2)/(cos(x)^4 - 2*sin(x)^6) - ((3*cos(x)^3 + 2*cos(x)*sin(x)^4)*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3))/(2*(cos(x)^4 - 2*sin(x)^6)) - (cos(x)^3*(1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 4/3)^2)/(2*(cos(x)^4 - 2*sin(x)^6))]
[ 1, 1, 1]
D =
[ 1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) + (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3) + 4/3, 0, 0]
[ 0, 4/3 - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 - (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)), 0]
[ 0, 0, 4/3 - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)/2 + (3^(1/2)*(1/(9*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3)) - (((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))*1i)/2 - 1/(18*(((cos(x)^2 + sin(x)^2 - 1/27)^2 - 1/729)^(1/2) - cos(x)^2 - sin(x)^2 + 1/27)^(1/3))]
>> D=simplify(diag(D),300) % unclear why D(1) doesn't simplify to 2 - 1i
D =
2 - (2*(-1)^(1/3)*(2*3^(1/2) - 3)*(- 15*3^(1/2) - 26)^(1/3))/3 - 3^(1/2)/3
0
2 + 1i
>> V2=V(:,2); % pick the eigenvector associated with lamda = 0
>> simplify(imag(V2),100) % verify the imaginary part is 0
ans =
0
0
0
>> V2=real(V2); % grab the real part
>> V2=simplify(V2,100)
V2 =
- 1/cos(2*x) - 1
-cos(x)/(2*cos(x)^2 - 1)
1
>> simplify(V2*(1-2*sin(x)^2),100)
ans =
-2*cos(x)^2
-cos(x)
cos(2*x)
  1 件のコメント
Stiv Nikolov
Stiv Nikolov 2021 年 2 月 5 日
Thanks!
I just could not figure out why it behaved this way and did not simplify in the first place. The z component of the vector was of the same form, which confused me even more as it seemed to work in at least some place.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

製品


リリース

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by